

Keywords

Crown margin placement, Periodontal tissue response, Prosthodontic design, Emergence profile, Restorative material, Gingival health.

Authors

Dr. Shruti Karvekar^{1*},
Dr. Saranya Aathilingaperumal²
Dr. Vani Sarada³
Dr. Sunpreet Kaur⁴,
Dr. Mudita Chaturvedi⁵
Dr. Abhijit singh⁶

Address for Correspondence

Dr. Shruti Karvekar^{1*}
Email- shruti.karvekar@gmail.com

¹KAHER'S KLE VK INSTITUTE OF DENTAL SCIENCES
READER Department- Department of Periodontology ORCID ID- <https://orcid/0000000336709540> Email- shruti.karvekar@gmail.com

²Resident periodontist - final year, Dept of Periodontology, Sree Balaji Dental College & Hospital, Pallikaranai - 600100 Email id: saranyatheeder@gmail.com ORCID id: 0009000028529780

³Faculty, Kristiu Jayanti Institute of Management Kristu Jayanti University K Narayanapura, Bengaluru Email: sarada889@yahoo.in

⁴Reader SGT Dental College, Hospital and Research Institute, Gurugram Orcid ID : 0000000338631214
Mail ID : sunpreet.kaur26@gmail.com

⁵BDS, MDS, PhD Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India. ORCID- 00000341922514 ymudita@hotmail.com

⁶Senior resident, Department of Prosthodontics and Crown and Bridge, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar Orcid id 0009000865775719 abhijitsingh978@gmail.com

Received: 11.05.2025

Accepted: 27.08.2025

doi: 10.1922/EJPRD_2865Karvekar18

Periodontal Tissue Response to Crown Margin Placement: A Comparative Evaluation of Prosthodontic Designs

ABSTRACT

This comprehensive review examines the influence of crown margin placement and prosthodontic design on periodontal tissue response, emphasizing the biological principles that govern longterm restorative success. The periodontal tissues are highly sensitive to restorative interventions, and their stability depends on respect for the natural soft tissue attachment and the careful positioning of restoration margins. Evidence consistently shows that supragingival margin placement offers the most favorable clinical outcomes due to reduced plaque accumulation, greater accessibility for oral hygiene, and minimal disruption to gingival architecture. Equigingival margins may also perform satisfactorily when precisely adapted, while subgingival margins remain useful for esthetic and structural purposes but carry a greater risk of inflammation and loss of attachment. Prosthodontic factors such as margin geometry, emergence profile, restorative material, and fabrication technique further influence periodontal behavior by affecting surface smoothness, bacterial adhesion, and soft tissue compatibility. Integrating digital technologies, minimally invasive restorative approaches, and biologically driven preparation concepts enhances marginal accuracy and supports periodontal preservation. The findings reinforce the importance of individualized treatment planning based on tissue phenotype, esthetic requirements, and clinical needs to achieve optimal functional and periodontal outcomes.

1. INTRODUCTION

The interrelationship between prosthodontic restorations and periodontal health has long been recognized as a critical determinant of longterm clinical success. Restorative margins that encroach upon or disrupt periodontal tissues can lead to inflammation, attachment loss, and structural instability, whereas welldesigned restorations enhance function while preserving softtissue equilibrium. The periodontal tissues comprising the gingiva, periodontal ligament, cementum, and alveolar bone are highly responsive to restorative interventions, and even minor deviations in margin placement or contour can initiate pathological changes. This sensitivity is particularly evident around the supracrestal tissue attachment (STA), previously termed "biologic width," which represents the physiological dimension required for softtissue stability and is a pivotal reference point in restorative dentistry. Contemporary evidence underscores that any restorative margin violating this dimension risks provoking chronic inflammation, gingival recession, or bone resorption, thereby compromising both periodontal and prosthodontic prognosis¹.

The biological concept of STA has undergone refinement in recent years, emphasizing its structural composition and functional significance in restorative planning. Supracrestal tissue attachment must remain undisturbed to maintain periodontal health, and clinicians must understand its dimensions and variability across individuals. Updated literature highlights that restorative procedures must respect this anatomical requirement and avoid subgingival intrusion unless clinically justified. Deviations from this principle can jeopardize soft tissue integrity and esthetic outcomes, particularly in the anterior region where marginal discrepancies are more visible and biologically consequential². Similarly, management strategies such as crown lengthening have been explored to reestablish an adequate STA when restorative requirements mandate deeper margin placement. Crown lengthening facilitates the placement of margins without biologic width violation; however, its indications, limitations, and esthetic implications must be carefully weighed in clinical decisionmaking³.

The positioning of crown margins, whether supragingival, equigingival, or subgingival, plays a central role in determining the periodontal response. Subgingival margins, although often necessary for esthetic or structural reasons, are associated with increased plaque retention, higher inflammatory marker expression, and more frequent bleeding on probing. Systematic assessments have demonstrated that procedures such as deep margin elevation (DME) can mitigate some periodontal risks when appropriately executed, allowing clinicians to modify subgingival defects coronally and reduce invasive surgical requirements⁴. Recent advances in restorative protocols have expanded the use of DME, offering greater predictability in achieving biologically compatible margins and improving restorative access in deep cervical areas. Comparative analyses suggest that decisions between crown lengthening and DME should be guided by prognosis, periodontal biotype, and anticipated functional demands⁶. As restorative philosophies evolve, DME has received increased attention for its minimally invasive potential, particularly in complex posterior restorations. Scoping reviews highlight its utility in elevating deeply placed margins to a more accessible supragingival position, reducing risks associated with subgingival restorative manipulation⁷. Likewise, evidencebased evaluations have demonstrated that DME positively influences marginal integrity and microleakage when performed with appropriate adhesive protocols, ultimately contributing to improved gingival outcomes⁸. Recent narrative reviews further emphasize the importance of strict procedural adherence, material selection, and biomechanical considerations to ensure favorable periodontal responses following DME⁹. In addition to restorative and preparatory techniques, emerging evidence indicates that interproximal restorations also significantly impact periodontal conditions. A quasiexperimental study revealed that even conservative restorative interventions can modify cytokine profiles and alter inflammatory responses within the gingival sulcus, underscoring the delicate equilibrium of

periodontal tissues and the need for biologically respectful restorative design¹⁰. Based on these considerations, this review synthesizes contemporary evidence to provide a comprehensive understanding of periodontal tissue responses to crown margin placement and prosthodontic margin designs.

Objectives

1. To critically evaluate how supragingival, equigingival, and subgingival crown margin placements influence periodontal health and tissue stability
2. To compare contemporary prosthodontic design approaches, including margin geometry, material selection, and restorative techniques, in relation to their periodontal consequences

2. METHODOLOGY

This comprehensive review adopts an integrative narrative approach to examine periodontal tissue responses to various crown margin placements and prosthodontic design features. Relevant scientific and clinical literature was gathered from major academic databases and authoritative periodontal–prosthodontic sources, to ensure conceptual relevance and high scholarly quality. The extracted evidence was organized into thematic clusters, including biological tissue reactions, prosthodontic margin design parameters, materialrelated influences, and clinical procedural determinants. These themes were synthesized through descriptive mapping, comparative evaluation, and integrative interpretation to provide a unified understanding of how margin placement affects periodontal health. Figure 1 illustrates the methodological framework guiding this review. It outlines the steps of literature exploration, thematic grouping of biological and prosthetic factors, synthesis through narrative comparison, and integration into consolidated insights on periodontal responses to crown margin placement.

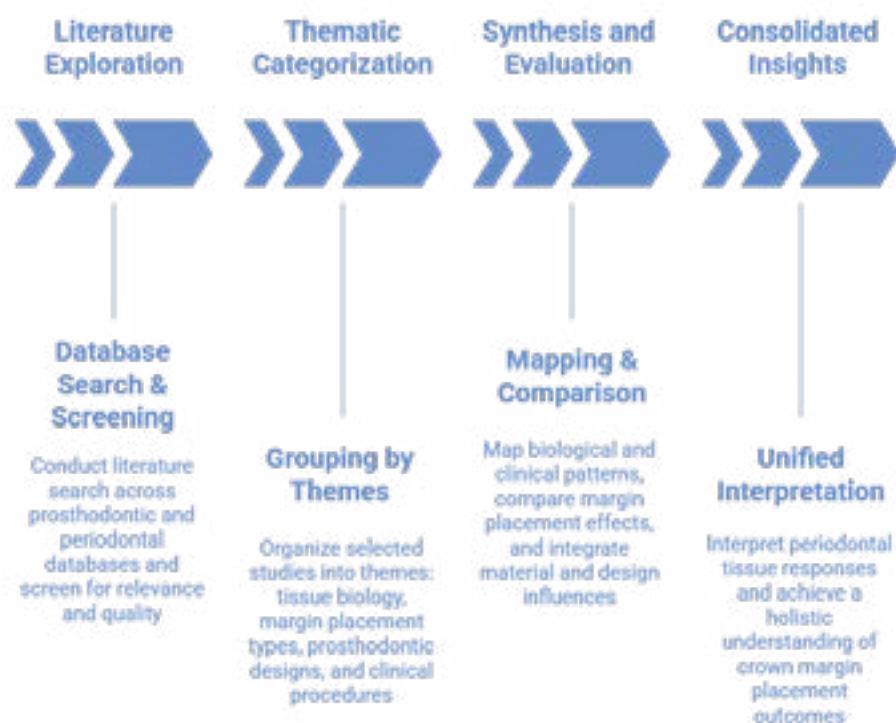


Figure 1. Methodological Framework for the Comprehensive Review

RESULTS

Periodontal Tissue Response to Different Crown Margin Placements Supragingival Margins

Evidence from recent clinical trials demonstrated that supragingival margins consistently supported superior periodontal outcomes due to reduced plaque retention and minimal sulcular trauma. A prospective controlled trial evaluating deepmargin elevation combined with CAD/CAM partial restorations reported stable periodontal indices when margins were moved coronally into a supragingival position, reinforcing the biological compatibility of this approach¹¹. The findings summarized in Table 1 show that supragingival margins exhibit the lowest inflammation scores and minimal changes in probing depth, contributing to stable gingival architecture. These results were corroborated by longterm evaluations of proximal box elevation procedures, which demonstrated stable periodontal conditions and minimal inflammatory changes when margins were kept above the sulcus¹².

Table 1. Periodontal Outcomes Associated with Supragingival, Equigingival, and Subgingival

Margin Type	Periodontal Outcome Summary
Supragingival	Lowest inflammation, stable PD, minimal sulcular trauma ^{11,12}
Equigingival	Acceptable periodontal stability if margins are smooth and well-adapted ^{12,13}

Equigingival Margins

Although historically approached with caution, equigingival margins presented clinically acceptable periodontal responses when their adaptation and smoothness were precisely controlled. Threeyear observations of indirect resin composite restorations indicated that equigingival placements demonstrated stable bleedingonprobing values and acceptable plaque indices when restoration contours conformed closely to natural supragingival anatomy¹². Systematic evaluations further highlighted that equigingival margins avoided deep sulcular intrusion and maintained periodontal parameters within physiologic limits, provided that finish lines were wellpolished and free of overhangs¹³. These patterns are detailed within Table 1, reinforcing their suitability in esthetically sensitive regions.

Subgingival Margins

Subgingival margin placement was associated with the highest periodontal risk, including increased gingival inflammation, expression of inflammatory biomarkers, and potential violation of the supracrestal tissue attachment. Systematic reviews have concluded that deeper cervical margins significantly elevate probing depth, bleedingonprobing, and plaque retention due to limited accessibility for hygiene maintenance^{13,14}. Nonetheless, controlled use of deep margin elevation procedures has been shown to reduce the need for subgingival positioning by repositioning defective margins coronally, thereby mitigating periodontal compromise¹¹.

Influence of Prosthodontic Design Features on Periodontal Outcomes Margin Geometry

Margin geometry demonstrated a significant influence on periodontal behavior. Clinical evaluations of vertical preparation and chamfer margin designs indicated reduced softtissue inflammation due to improved marginal integrity and reduced overhang formation¹⁵. Retrospective evidence up to five years confirmed that vertical techniques yielded favorable periodontal stability by promoting natural softtissue adaptation around zirconia and PFM restorations. The comparative performance of various margin geometries is summarized in Table 2.

Table 2. Impact of Margin Geometry on Periodontal Outcomes

Margin Design	Periodontal Effect
Chamfer	Reduced inflammation, good marginal adaptation ¹⁵
Vertical/BOPT	Stable gingival contours, high softtissue compatibility ^{16,17}

Emergence Profile and Crown Contour

Anatomically guided emergence profiles minimized gingival displacement, reduced plaque stagnation, and preserved gingival zenith patterns. Longterm prospective studies evaluating biologically oriented preparation techniques (BOPT) demonstrated high patient satisfaction and favorable periodontal behavior when emergence contours were precisely controlled¹⁷. Vertical preparation crowns also promoted a more harmonious softtissue line, reducing inflammation and enhancing mucogingival stability^{16,17}.

Material Type and Surface Microstructure

Material selection exerted a significant effect on bacterial adhesion and gingival response. Zirconia and lithium disilicate crowns exhibited smoother surfaces and lower plaque accumulation compared to metalceramic restorations¹⁸. These findings are outlined in Table 3, indicating that polished monolithic zirconia restorations provided the most favorable softtissue integration.

Table 3. Influence of Material Type and Surface Microstructure on Periodontal Behavior

Material	Gingival Response
Monolithic Zirconia	Lowest plaque adhesion, stable softtissue architecture ^{16,18}
Lithium Disilicate	Good surface smoothness, acceptable plaque levels ¹⁶

Fabrication Technique

Digital CAD/CAM fabrication enhanced marginal precision, reducing gaps that predispose to plaque retention and inflammation. Prospective clinical studies demonstrated that monolithic zirconia crowns fabricated through fulldigital workflows maintained periodontal stability over three years, with minimal BOP and recession values¹⁸. Digital volumetric evaluations

valuations further confirmed stable periodontal contours around BOPT restorations fabricated with digital protocols¹⁹.

Clinical Procedures Affecting Periodontal Response

Respecting the supracrestal tissue attachment was critical for preserving periodontal stability. Studies emphasized that excessive subgingival extension during preparation predisposed tissues to inflammation, destabilized the biological seal, and increased the risk of gingival recession²⁰. Vertical preparation techniques promoted minimal invasion of the sulcus and helped preserve tissue height¹⁶.

Gingival Retraction Methods

Evidence revealed that mechanical and chemical retraction techniques varied in their influence on sulcular epithelium. Minimally traumatic methods maintained softtissue health and reduced postoperative inflammation compared to aggressive displacement protocols¹⁵.

Impression vs. Digital Scanning

Digital scanning reduced sulcular trauma and eliminated the need for aggressive retraction, contributing to better short- and longterm periodontal outcomes. Prospective clinical studies confirmed reduced bleeding and improved tissue stability when digital workflows were used^{18,19}.

Cementation and Adhesive Protocols

Excess cement remained a major contributor to postoperative inflammation, particularly with subgingival margins. Resin cements required meticulous removal to prevent plaque accumulation and subsequent tissue damage¹¹.

Table 4. Clinical Procedures Influencing Periodontal Outcomes

Clinical Procedure	Effect on Periodontal Tissues
Tooth Preparation Depth	Risk of STA violation, increased inflammation ^{16,20}
Gingival Retraction	Traumadependent inflammation levels ¹⁵
Digital Scanning	Lower sulcular trauma, improved tissue stability ^{18,19}

Evidence from Key Comparative Studies

Comparative trials consistently demonstrated several universal trends: deeper margins increased inflammatory burden; precise and welladapted margins minimized attachment loss; and materials with smoother surfaces improved tissue integration. BOPT restorations produced stable periodontal contours and higher softtissue time^{17,19}compatibility over . However, heterogeneity in operator technique and margin placement depth created gaps in longterm evidence. The biological principles summarized by supracrestal tissue attachment literature further reinforced the necessity of preserving this dimension during all restorative procedures²⁰.

DISCUSSION

The synthesized evidence illustrates that periodontal physiology remains the primary determinant of tissue

response to restorative margin placement, confirming foundational concepts regarding the supracrestal tissue attachment and its critical role in maintaining gingival stability. Classical periodontal principles emphasize that disruption or invasion of this biological dimension leads to inflammation, connective tissue breakdown, and potential bone remodeling, making biologic width preservation essential for restorative success²¹. Epidemiological observations have similarly demonstrated that defective margins, overhangs, and inappropriate finish line placement increase the risk of periodontal attachment loss, reinforcing the longrecognized interplay between restorative design and periodontal breakdown²². These principles provide the physiological framework for interpreting recent clinical findings and underscore the importance of biologically respectful restorative planning. Clinically, the choice of margin position must be tailored to anatomical demands, functional considerations, and esthetic priorities. Supragingival margins consistently demonstrate superior periodontal compatibility, particularly in patients with favorable periodontal thickness and controlled plaque levels. Conversely, subgingival margins, although often necessary for esthetic concealment or management of deep caries, carry higher biological risk because of their proximity to the delicate epithelial and connective tissue attachments²³. Modern restorative protocols such as deep margin elevation have emerged to address these challenges by elevating deep cervical margins coronally, thereby reducing sulcular manipulation while improving restorative access and minimizing the likelihood of biologic width violation²⁴. This evolving approach reflects a shift toward minimally invasive methods that respect periodontal architecture while still optimizing restorative function.

Margin geometry also plays a pivotal role in determining periodontal stability. Vertical preparation concepts, particularly those associated with the biologically oriented preparation technique (BOPT), have been shown to facilitate harmonious gingival adaptation by guiding natural softtissue reshaping around the restoration²⁵. This represents a significant departure from traditional horizontal finish lines, which depend heavily on mechanical precision and may be more susceptible to marginal discrepancies. The shift toward biologically driven preparation reflects a broader paradigm shift within prosthodontics, integrating periodontal science more closely into restorative strategy.

Periodontal phenotype emerges as another critical variable influencing tissue behavior. Thin biotypes are more vulnerable to recession, softtissue collapse, and inflammatory complications following subgingival intervention, while thick biotypes demonstrate greater resilience and stability²⁶. As such, accurate evaluation of phenotype should precede any restorative procedure, guiding the clinician in selecting margin depth, impression technique, retraction method, and even the restorative material to ensure longterm success.

Balancing esthetics, function, and biology remains one of the most significant challenges in modern restorative dentistry. Techniques such as deep margin elevation and minimally invasive adhesive protocols allow clinicians to achieve esthetic goals while preserving the biological seal. These approaches support gingival symmetry, maintain the gingival zenith, and prevent longterm recession, making them particularly valuable in the esthetic zone^{27,28}. Such methods mirror the broader movement in dentistry toward patient-centered, biologically integrated restorative philosophies.

Technological advancements have further enhanced the precision and predictability of restorative procedures. CAD/CAM fabrication systems offer improved marginal accuracy, while digital impression techniques minimize sulcular trauma, leading to reduced postoperative inflammation and more stable periodontal contours²⁹. Digital tissue profiling also enables highly accurate emergence profile design, improving softtissue integration and reducing periodontal risk.

Despite these advances, the existing literature presents notable limitations. Variability in methodology, operator expertise, and followup duration complicates direct comparison across studies and restricts the generalizability of outcomes. Shortterm evaluation remains common, limiting understanding of longterm periodontal behavior, especially around subgingival and vertical preparation margins²⁷⁻²⁹. Future research should prioritize standardized protocols, longterm followup, and phenotypebased comparative analyses to clarify optimal restorative strategies.

Collectively, current evidence highlights a distinct paradigm shift from purely mechanical restorative approaches toward biologically oriented design principles. This evolution underscores the importance for prosthodontists to integrate biological understanding, esthetic considerations, and functional demands to ensure predictable, longlasting periodontal health³⁰.

CONCLUSION

The collective evidence demonstrates that crown margin placement exerts a decisive influence on periodontal tissue behavior, underscoring the importance of biologically respectful restorative planning in achieving longterm clinical success. Supragingival margins consistently emerge as the most favorable option due to their minimal impact on plaque accumulation, ease of maintenance, and reduced risk of violating the supracrestal tissue attachment, thereby supporting periodontal stability. Conversely, subgingival margins, while often necessary for esthetic or structural indications, require exceptional precision in preparation, contouring, and finishing to prevent sulcular irritation, inflammatory responses, and subsequent attachment loss. The role of prosthodontic design is equally critical, as margin geometry, emergence profile, and restorative material selection collectively determine the degree of soft tissue compatibility and microbial adhesion. Advances in high-strength ceramics, digital workflows, and CAD/CAM fabrication have enhanced marginal accuracy and surface smoothness, contributing to improved periodontal outcomes when used appropriately. Nevertheless, achieving optimal results requires more than technical proficiency; it demands thoughtful integration of esthetic expectations, biomechanical requirements, and the biological limitations of the periodontal apparatus. Central to this approach is individualized treatment planning that considers the patient's periodontal phenotype, as thin and thick biotypes exhibit distinctly different susceptibilities to gingival recession and inflammatory changes. Customized retraction techniques, tailored preparation depths, and carefully selected adhesive strategies further contribute to maintaining tissue health around restorations. As restorative dentistry continues to shift toward minimally invasive, biologically oriented concepts, clinicians are encouraged to adopt approaches that respect tissue integrity while delivering esthetic and functional excellence. Ultimately, successful management of crown margins depends on harmonizing scientific princi-

pleswith clinical judgment, ensuring that restorative interventions support both periodontal preservation and longterm prosthodontic success.

REFERENCES:

1. Sah S, Shrestha S, Acharya P. Supracrestal Tissue Attachment: A Narrative Review. *Journal of Nepalese Society of Periodontology and Oral Implantology*. 2024;8(2):819.
2. Shah J, Webb L, McColl E, Daldry M, Bhagi S, Witton R. Supracrestal tissue attachment: an update. *Dental update*. 2023 Jan 2;50(1):547.
3. Qali M, Alsaegh H, Alsaraf S. Clinical considerations for crown lengthening: a comprehensive review. *Cureus*. 2024 Nov 3;16(11).
4. Felemban MF, Khattak O, Alsharari T, Alzahrani AH, Ganji KK, Iqbal A. Relationship between deep marginal elevation and periodontal parameters: a systematic review. *Medicina*. 2023 Nov 3;59(11):1948.
5. Eggmann F, Ayub JM, Conejo J, Blatz MB. Deep margin elevation—Present status and future directions. *Journal of Esthetic and Restorative Dentistry*. 2023 Jan;35(1):2647.
6. Mugri MH, Sayed ME, Nedumgottil BM, Bhandi S, Raj AT, Testarelli L, Khurshid Z, Jain S, Patil S. Treatment prognosis of restored teeth with crown lengthening vs. deep margin elevation: a systematic review. *Materials*. 2021 Nov 8;14(21):6733.
7. Taylor A, Burns L. Deep margin elevation in restorative dentistry: A scoping review. *Journal of Dentistry*. 2024 Jul 1;146:105066.
8. Sadeghnezhad P, Sarraf Shirazi A, Borouzinat A, Majidinia S, Soltaninezhad P, Nejat AH. Enhancing subgingival margin restoration: a comprehensive review and metaanalysis of deep margin elevation's impact on microleakage. *EvidenceBased Dentistry*. 2024 Dec;25(4):212.
9. Karageorgiou A, Fostiroploulou M, Antoniadou M, Pappa E. Deep Margin Elevation: Current Evidence and a Critical Approach to Clinical Protocols—A Narrative Review. *Adhesives*. 2025 Jul 25;1(3):10.
10. Discepoli N, Marruganti C, Santoro F, Mirra R, Fiorino F, Medaglini D, Pozzi G, Ferrari M, Grandini S. Impact of interproximal composite restorations on periodontal tissue health: Clinical and cytokine profiles from a prepost quasiexperimental study. *Journal of Periodontology*. 2022 Jun;93(6):91123.
11. Hausdörfer T, Lechte C, Kanzow P, Rödig T, Wiegand A. Periodontal health in teeth treated with deepmarginelevation and CAD/CAM partial lithium disilicate restorations—a prospective controlled trial. *Clinical Oral Investigations*. 2024 Nov 30;28(12):670.
12. Aksaka N, Gözetiçil B, Özcan M. Periodontal status of indirect resin composite restorations with proximal box elevation: 3year clinical results. *Clinical Oral Investigations*. 2025 Nov 29;29(12):593.
13. Srirama S, Jain S, Arul B, Prabakar K, Natanasabapathy V. Effect of Deep Margin Elevation on the Pulpal and Periodontal Health of Teeth: A Systematic Review. *Operative Dentistry*. 2024 Jul 1;49(4):388402.
14. Chun EP, de Andrade GS, Grassi ED, Garaicoa J, GaraicoaPazmino C. Impact of Deep Margin Elevation Procedures Upon Periodontal Parameters: A Systematic Review. *The European journal of prosthodontics and restorative dentistry*. 2023 Feb 28;31(1):1021.
15. GonzalezBonilla M, Berrendero S, MoronConejo B, Martinez-Rus F, Salido MP. Clinical evaluation of posterior zirconia-based and porcelaininfusedtometal crowns with a vertical preparation technique: an up to 5year retrospective cohort study. *Journal of Dentistry*. 2024 Sep 1;148:104953.
16. Kasem AT, Ellayeh M, Özcan M, Sakrana AA. Threyear clinical evaluation of zirconia and zirconia reinforced lithium silicate crowns with minimally invasive vertical preparation technique. *Clinical oral investigations*. 2023 Apr;27(4):157788.
17. SerraPastor B, BustamanteHernández N, FonsFont A, Fernanda SoláRuiz M, RevillaLeón M, AgustínPanadero R. Periodontal behavior and patient satisfaction of anterior teeth restored

with single zirconia crowns using a biologically oriented preparation technique: a 6-year prospective clinical study. *Journal of clinical medicine*. 2021 Aug; 6(16):3482.

18. Gseibat M, Sevilla P, LopezSuarez C, Rodríguez V, Peláez J, Suárez MJ. Prospective clinical evaluation of posterior third-generation monolithic zirconia crowns fabricated with complete digital workflow: two-year followup. *Materials*. 2022 Jan 17;15(2):672.

19. AgustínPanadero R, Mazanek LL, Loi I, FonsBadal C, Cascales ÁF, Gioioso MR, Barquero JA, SerraPastor B. Periodontal outcomes and digital volumetric variation following restorations using the biologically oriented preparation technique (BOPT). *The Journal of Prosthetic Dentistry*. 2025 Aug 5.

20. Sah S, Shrestha S, Acharya P. Supracrestal Tissue Attachment: A Narrative Review. *Journal of Nepalese Society of Periodontology and Oral Implantology*. 2024;8(2):819.

21. Padbury Jr A, Eber R, Wang HL. Interactions between the gingiva and the margin of restorations. *Journal of clinical periodontology*. 2003 May;30(5):37985.

22. Broadbent JM, Williams KB, Thomson WM, Williams SM. Dental restorations: a risk factor for periodontal attachment loss?. *Journal of clinical periodontology*. 2006 Nov;33(11):80310.

23. Mously EA, Babkair HA, Elboraey MO. The Impact of Deep Marginal Elevation on the Periodontium: A Review Article. *Sciences*. 2023;6:2534.

24. Ashour AM, ElKateb MM, Azer AS. The effect of two preparation designs on the fracture resistance and marginal adaptation of two types of ceramic crowns using CAD/CAM technology (In vitro study). *BMC Oral Health*. 2024 Sep 11;24(1):1065.

25. BonfantiGris M, Pradies G, MoronConejo B, Gil A, MartinezRus F. Vertical Versus Horizontal Finishing Lines for Dental Preparations: A Systematic Review With MetaAnalysis. *Journal of Esthetic and Restorative Dentistry*. 2025 Mar;37(3):70726.

26. Shah J, Webb L, McColl E, Daldry M, Bhagi S, Witton R. Supracrestal tissue attachment: an update. *Dental update*. 2023 Jan 2;50(1):547.

27. Qali M, Alsaegh H, Alsaraf S. Clinical considerations for crown lengthening: a comprehensive review. *Cureus*. 2024 Nov 3;16(11).

28. Samartzi TK, Papalexopoulos D, Ntovas P, Rahiotis C, Blatz MB. Deep margin elevation: a literature review. *Dentistry Journal*. 2022 Mar 14;10(3):48.

29. Srirama S, Jain S, Arul B, Prabakar K, Natanasabapathy V. Effect of Deep Margin Elevation on the Pulpal and Periodontal Health of Teeth: A Systematic Review. *Operative Dentistry*. 2024 Jul 1;49(4):388402.

30. Peskersoy C, Acar G. In Vitro Evaluation of the Mechanical Properties of Posterior Adhesive Restorations Fabricated Using Three Different Techniques. *Polymers*. 2025 May 14;17(10):1340.