

Keywords

Local anaesthesia, Oral mucosal disorders, Prosthodontic treatment, Restorative dentistry, Patient-reported outcomes

Authors

Dr. Avina Kharat^{1*}

¹MD Pharmacology, Senior Resident, ESIC Medical College and Hospital Indore, ORCID ID - <https://orcid.org/0009-0000-5502-960X>, avinak30@gmail.com

Swetha Makkenna²

²Bachelor of Dental Surgery, Department of Oral Medicine and Radiology, SRM Dental College, Ramapuram, Chennai, Tamil Nadu, 600089, INDIA, ORCID ID: 0009-0006-4400-2819, makkenaswetha76@gmail.com

Dr. Abarna Jawahar³

³Senior Lecturer, Department of Oral Medicine and Radiology, Sree Balaji Dental College & Hospital Bharath Institute of Higher Education and Research (BIHER) ORCID ID - 0000-0001-7937-3923, drabarnajawahar@gmail.com

Dr. Bharathi SH⁴

⁴Professor and Head, Periodontology and Implantology, RGUHS, GDCRI ORCID ID: 0009-0000-0175-5761, bharathish70@gmail.com

Dr. K Sadananda⁵

⁵Assistant Professor, Department of Periodontics and Implantology, RGUHS, GDCRI. ORCID ID: 0009-0006-1400-3765, sadaperio@gmail.com

Dr Mohammed Ismail B⁶

⁶Professor, Department of Periodontology And Implantology, RGUHS, GDCRI. ORCID ID: 0009-0001-6362-0902,

Received: 02.01.2026

Accepted: 27.01.2026

Clinical Evaluation Of Local Anaesthetic Efficacy In Patients With Oral Mucosal Disorders Undergoing Prosthodontic And Restorative Treatment

Abstract

Successful oral mucosal disorders that can change the perception of pain and tissue sensitivity necessitate the use of effective local anaesthesia to administer successful prosthodontic and restorative dental care. The study aimed to determine the perceived effectiveness of local anaesthetic methods in patients with oral mucosal disorders during prosthodontic and restorative dental treatment in a randomised clinical trial incorporating patient-reported and practitioner-reported outcome measures. A cross-sectional observational study was carried out using a questionnaire based on observational research in 50 adult patients who received oral mucosal disorder treatment of some kind, either through prosthodontic or restorative treatment, under the influence of local anaesthesia, and their treating prosthodontists or restorative dentists. Demographic and clinical data, patient-reported outcome data regarding pain relief, onset and duration of anaesthesia, patient comfort during the procedures, and practitioner-reported outcome data regarding anaesthetic adequacy and clinical manageability were collected by using a structured, validated questionnaire. The responses were measured with a five-point Likert scale. Inferential analysis was conducted using non-parametric tests, such as Mann-Whitney U and Spearman's rank correlation tests (descriptive statistics were applied). The local anaesthetic methods were reported to have a high degree of perceived effectiveness with positive ratings to pain control, onset, duration and overall procedure comfort. Patients whose oral mucosa is in an active state complained of more sensitivity and intra-procedural discomfort and were more prone to supplemental anaesthetic administration than those with controlled or remission conditions ($p < 0.05$). An intermediate positive association was evident between patient-reported pain and practitioner-reported anaesthetic supplementation (0.52, 0.01). In cases of oral mucosal disorders, the standard local anaesthetic practices are still effective in clinical practice in prosthodontic and restorative treatment of patients. Personalized anaesthetic preparation and adaptive methodology of technique are beneficial in improving patient comfort and procedural efficiency in normal clinical practice.

1. Introduction

Local anaesthesia has been a pillar in the contemporary dental practice, where it is used to carry out the procedures of prosthodontics and restorative dentistry with painlessness and also provide comfort to the patient and efficiency in carrying out the procedure. Successful delivery of local anaesthetic has a direct effect on the acceptance of treatment, clinical accuracy and patient satisfaction. Although the field of anaesthetic pharmacology and technique has been maintaining development, the variability in anaesthetic response remains a problem for clinicians, especially in patients who come with altered oral tissue conditions. Thorough analyses have highlighted that the efficacy of anaesthesia is determined by elements that can include tissue health, neural anatomy,

pharmacodynamic characteristics, and administration style, and all of them can interact unpredictably in a clinical setting [1]. Therefore, the research that can determine the impact of these factors on the results of anaesthesia is a significant topic of clinical investigation.

The use of local anaesthetics in oral and maxillofacial surgery has been widely researched, and it has been found that infiltration and nerve block methods are reliable in analgesia in routine settings [2]. Clinical effectiveness can, however, be affected in cases of anatomical or pathological differences. The significance of mucosal integrity has been brought to the fore in recent studies in determining the diffusion of anaesthetic onset, duration, and diffusion. Other innovative ideas, like mucoadhesive topical formulations, have shown promising tolerability and efficacy of compromised mucosal tissues, especially among vulnerable populations [3]. These results highlight the clinical significance of the mucosal state of condition as a predictor of anaesthetic practice.

As observed in the literature, the concept of the locoregional approach to dental anaesthesia has gained importance in the contemporary literature and incorporates both pharmacological and tissue-specific considerations [4]. Comparative analysis has revealed that buffered and non-buffered preparations, diverse concentrations of articaine and lidocaine, can have different effects based on tissue nature and the requirement of the procedure [5]. Studies involving randomized controlled trials on both pediatric and adult patients have also proved that the efficacy of anaesthetics is affected by not only drug choice but also by the local tissue responsiveness and procedural situation [6]. Nevertheless, this kind of research has been largely done on healthy oral tissues and is therefore not applicable to patients with mucosal pathology.

The clinical problems of the oral mucosa, such as inflammatory, ulcerative, and erosive disorders, are unique due to changes in permeability, nociceptor sensitivity, and tissue strength. Studies that have been conducted on oncology-related mucositis have revealed that inflamed or damaged mucosa is characterised by increased perceived pain and unpredictable response to analgesic and anaesthetic drugs [7]. These findings, though providing a good source of insight, are mostly based on medical as opposed to dental procedural settings. In a field of dentistry, such as prosthodontic and restorative dental treatments, in which extended treatment and accuracy are of utmost importance, there is insufficient evidence to discuss anaesthetic effectiveness when mucosal pathology is present.

Technical considerations towards attaining sufficient anaesthesia in the face of complicated settings have been described in clinical books and surgical manuals with a focus on the experience of the practitioner and altering technique [8]. Recent narrative reviews have reaffirmed the fact that the local anaesthetic mechanisms are similar across clinical settings, but their efficacy can be altered by the pH of tissues, tissue inflammation, and neural

sensitization [9]. Adjunctive treatments have also been mentioned, like sedation, but again are primarily discussed in the pediatric context and have little applicability to standard prosthodontic care [10,11]. Clinical practice is still guided by standard manuals and handbooks, which, however, may not, in most cases, have any condition-specific advice to patients with oral mucosal disorders [12].

Articaine has been of special concern, as it is better in diffusion and has been suggested to be more effective than lidocaine in dentistry practice [13,14]. The safety and efficacy studies have, however, been done on populations as a whole, without stratification on the basis of mucosal health. Moreover, they have investigated the use of pain modulation techniques, such as the use of anti-inflammatory adjuncts in the field of dentistry, with reference to the intricate nature of the dynamics between inflammation and analgesics [15]. Principles of endodontics literature have always focused on the complexity of pain management, citing that tissue pathology plays a significant role in the success of anaesthetic treatment [16].

Nevertheless, in spite of the richness of the literature on the subject, there still exists a gap in the real-life clinical assessment of the local anaesthetic efficacy of patients with oral mucosal disorders during the course of prosthodontic and restorative therapy. Recent research is skewed towards pharmacological comparison, laboratory findings, or expert medical situations, which represent a minority of the common cases of restorative and prosthodontic therapies. Moreover, very few studies have combined patient-reported and practitioner-reported measures to determine anaesthetic performance in an all-inclusive manner. This absence of clinical evidence in practice limits the design of individualised anaesthetic management in patients with impaired mucosal status.

Therefore, the current research fulfilled this gap with the help of a questionnaire-based clinical analysis that aimed at the perception of anaesthetic efficacy, procedural comfort and clinical manageability in the context of prosthodontic and restorative practice. Through the collection of experiential data in patients and clinicians, the study was going to offer practice-oriented research in line with modern-day prosthodontic care.

Objectives of the Study

1. To evaluate the perceived efficacy of local anaesthetic techniques in patients with oral mucosal disorders undergoing prosthodontic and restorative dental procedures, using integrated patient-reported and practitioner-reported outcome measures.
2. To assess the influence of oral mucosal condition status (active/symptomatic versus controlled/remission) on pain perception, need for supplemental anaesthetic administration, and clinical manageability during prosthodontic and restorative treatment.

EJPRD

2. Methodology

2.1 Study Design

The study was done as a cross-sectional and observational study with the use of questionnaires to assess the perceived efficacy of the local anaesthetic application in patients with oral mucosal ailments during the prosthodontic and restorative dental surgeries. The research design was non-interventional, and no alteration of the standard clinical protocols was done, which enabled evaluation of the performance of anaesthetics in the real conditions of routine practice. The data were observed retrospectively after the selection of the completed procedures of prosthodontic or restorative treatments under local anaesthesia. Design allowed both patient-reported and practitioner-reported clinical assessments to be performed at the same time, allowing a thorough assessment of anaesthetic adequacy, comfort, and clinical manageability.

2.2 Study Population

The research was done in the case of prosthodontic and restorative dental care. The subjects included patients with oral mucosal disorders who had received dental treatment under local anaesthesia and the treating prosthodontists or restorative dentists involved in the treatment. In the final analysis, 50 full patient-practitioner response pairs were utilized. Each questionnaire was specific to a single clinical procedure and patient-reported outcomes and practitioner-reported observations were related to the same treatment episode.

2.3 Inclusion Criteria

The study involved the inclusion of patients aged 18 years or above, who were clinically diagnosed with oral mucosal disorders and who had any prosthodontic or restorative dental procedure under local anaesthesia. Eligibility also demanded that he/she was capable of understanding and filling in the study questionnaire on their own. The inclusion criteria stipulated a registered prosthodontist or restorative dentist with a minimum of one year of clinical experience in the area of prosthodontic or restorative practice to qualify as practitioners and needed to have dealt with an oral mucosal disorder among clients as part of their normal clinical practice. These were used to make sure that both a patient-reported experience and a practitioner-reported measure used in local anaesthetic efficacy captured both clinically relevant and informed views on local anaesthetic efficacy.

2.4 Exclusion Criteria

Patients who were not included in the study were patients who had systemic neurological diseases or chronic pain disorders that are known to affect perception of pain, as they are likely to confound the results of assessing anaesthetic efficacy. Emergency dental treatment was also omitted as it had a different clinical setting and anaesthetic needs than normal prosthodontic and restorative dental treatment. Incomplete questionnaires, which proved to have irregular response patterns, were not analyzed to ensure the reliability of the data. Practitioners who had minimal exposure to patients who have oral mucosal disorders

were also left out, so that practitioner-reported assessment is founded on sufficient clinical experience of managing such conditions.

2.5 Data Collection Instrument

A structured and self-administered questionnaire was developed to measure the data that were collected in line with the objectives of this study. There were four sections in the questionnaire. Section A was used to record demographic and clinical data, such as age, gender, type and status of oral mucosal disorder, lesion site, and type of prosthodontic or restorative procedure done. Section B measured patient-reported outcomes in connection to local anaesthetic efficacy, such as pain relief, onset and duration of anaesthesia, intra-procedural pain, sensitivity, need to be administered more anaesthetic, general procedure comfort, reduction of anxiety, and the desire to have the same treatment procedure in future. Section C assessed practitioner-reported clinical outcomes, which included adequacy of anaesthesia, onset and duration sufficiency, need for supplemental anaesthesia, technical difficulty, procedural efficiency, and effectiveness of usual anaesthetic protocols. Section D recorded details regarding anaesthetic protocols such as the agent, concentration of vasoconstrictor, method, topical anaesthetic and number of injections. Replies in Sections B and C were made on a five-point Likert scale and the choices were between 1 (strongly disagree) and 5 (strongly agree).

2.6 Questionnaire Validation

The content validation of the questionnaire was done by the expert review of the questionnaire by a group of clinicians who were already well versed in the field of prosthodontics and restorative dentistry. The relevance, clarity, and applicability of each item were evaluated by the reviewers on the basis of relevance to the routine clinical practice with oral mucosal disorders. Amendments were made according to the reviews of experts to make them clear and clinically suitable. A pilot of the study was then done to test the understanding level and consistency of responses. Cronbach's alpha was used to test the internal consistency reliability of the patient-reported and practitioner-reported domains and determine whether the questionnaire domains were coherent enough before final data analysis.

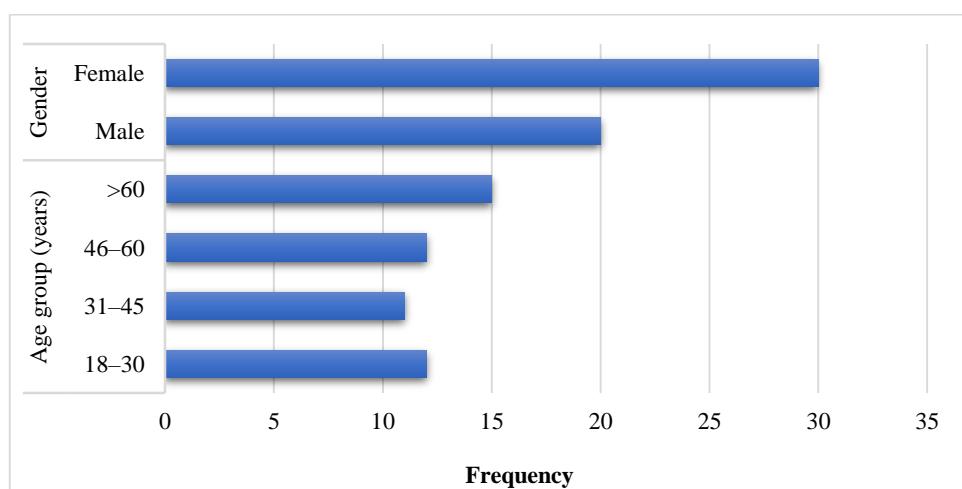
2.7 Data Collection Procedure

The administration of questionnaires was retrospective and was done after the completion of the prosthodontic or restorative dental procedure under local anaesthesia. The participants were allowed to fill out the questionnaire either using a printed or an electronic form, depending on the availability and choice. Patients and practitioners went through their respective sections on their own as a way of reducing bias and the influence of responses. All answers were anonymized, and the questionnaires were coded to enable the connection of patient-reported and practitioner-reported answers related to the same clinical procedure. Questionnaires that were filled out were filtered on completeness and

internal consistency before they were incorporated into the final dataset.

2.8 Statistical Analysis

A spreadsheet was used to input the data and analyze it using proper statistical software. The descriptive statistics were used to summarize demographical variables and questionnaire responses via the frequencies and percentages of categorical variables and the mean and standard deviation of Likert responses. Since Likert-scale data are ordinal, non-parametric tests were used. Patient-reported and practitioner-reported outcomes have also been compared with the Mann-Whitney U test to determine the difference between the active or symptomatic oral mucosal conditions and the controlled or remission state of the participants involved in the study. The relationship between patient-reported pain during the procedure and practitioner-reported supplemental anaesthetic administration was studied by means of the use of the Spearman rank correlation coefficient. The p-value below 0.05 was regarded as statistically significant and all the analyses were modelled in line with the objectives of the study and study questions.


3. Results

3.1 Demographic and Clinical Characteristics

A total of 50 subjects were involved in the study and were treated with prosthodontic or restorative dental procedures under local anaesthesia in the presence of oral mucosal disorders. All the participants were spread out in terms of age, with the largest number of 30% being above 60 years, 24% were 18–30 years, 24% were 46–60 years, and 22% were 31–45 years, as shown in Figure 1. The sample was made up of 60 females and 40% of males. Regarding oral mucosal pathology, the most common were the aphthous/ulcerative (32) and erosive/inflammatory (32) mucosal pathology, then the lichen planus/lichenoid (18), and atrophic/candidal (18) lesions. A small majority of the respondents were exposed to active or symptomatic mucosal (54%), with the rest exhibiting a controlled or remission status (46%). Preparation of crown or bridge tooth (38%), cementation or finishing procedure (20%), restorative filling (18%), impression procedure (12%) and denture fabrication or expansion (12%) were the most prevalent dental treatments, as demonstrated by Table 1. The most commonly affected areas of lesions were the buccal mucosa and the gingiva.

Table 1. Demographic and Clinical Characteristics of the Study Participants (n = 50)

Variable	Category	Frequency (n)	Percentage (%)
Age group (years)	18–30	12	24.0
	31–45	11	22.0
	46–60	12	24.0
	>60	15	30.0
Gender	Male	20	40.0
	Female	30	60.0
Oral mucosal disorder	Aphthous/ulcerative disorder	16	32.0
	Erosive/inflammatory mucosal condition	16	32.0
	Lichen planus / lichenoid lesion	9	18.0
	Atrophic/candidal lesion	9	18.0
Mucosal condition status	Active/symptomatic	27	54.0
	Controlled / remission	23	46.0
Dental procedure type	Crown or bridge tooth preparation	19	38.0
	Cementation/finishing procedure	10	20.0
	Restorative filling	9	18.0
	Impression procedure	6	12.0
	Denture fabrication/adjustment	6	12.0

Figure 1. Demographic distribution of study participants according to age group and gender

3.2 Patient-Reported Outcomes on Local Anaesthetic Efficacy

Patient-reported outcomes revealed rather positive impressions of the local anaesthetic behaviour. Procedural pain relief, which was adequate, had a high mean score (4.04 ± 0.86). Accordingly, the initiation and the duration of anaesthesia were positively rated with a mean score of 4.08 ± 0.85 and 4.06 ± 0.84 , respectively. The pain with the procedure, even with anaesthesia (B4), reported a low mean score (1.96 ± 0.88), implying that there was little discomfort during the procedure. The moderate variability was shown by the perception that

oral mucosal conditions elevated the sensitivity (2.80 ± 0.76), as illustrated in Table 2. The need to add further local anaesthetic to ensure comfort was not high (2.14 ± 0.82). The overall comfort during the treatment was also rated positively (4.12 ± 0.79) and willingness to have the same procedures again under local anaesthesia was also rated highly (4.56 ± 0.50). The null hypothesis that mucosal pathology adversely influenced anaesthetic effect was rated as mainly low (2.06 ± 0.81), whereas anxiety reduction that was linked to local anaesthesia was rated as positive (4.10 ± 0.83).

Table 2. Patient-Reported Outcomes on Local Anaesthetic Efficacy

Description	Mean \pm SD
Adequate pain relief	4.04 ± 0.86
Onset of anaesthesia	4.08 ± 0.85
Duration adequacy	4.06 ± 0.84
Pain during the procedure	1.96 ± 0.88
Increased sensitivity	2.80 ± 0.76
Additional anaesthetic required	2.14 ± 0.82
Overall procedural comfort	4.12 ± 0.79
Negative effect of mucosal disorder	2.06 ± 0.81
Willingness for repeat treatment	4.56 ± 0.50
Anxiety reduction	4.10 ± 0.83

3.3 Practitioner-Reported Clinical Outcomes

Patient perceptions were supported by practitioner-reported measurements. On adequacy of clinical anaesthesia, there was a high mean score (4.44 ± 0.50), and onset appropriateness (4.54 ± 0.50) and duration sufficiency (4.66 ± 0.48) showed similarly high ratings. The requirement to administer supplemental anaesthetics was rather small (2.02 ± 0.82). The procedural difficulty, mucosal pathology, complications

in anaesthetic administration and interference with the efficiency of the procedure demonstrated moderate means (2.46 ± 0.50 and 2.38 ± 0.53 , respectively). The rating of the adequacy of the chosen anaesthetic agent was positive (4.48 ± 0.50). The alterations in anaesthetic method were also felt to enhance patient comfort (4.52 ± 0.51), and standard anaesthetic guidelines were also found to be efficient irrespective of mucosal pathology (4.60 ± 0.49), as shown in Table 3.

Table 3. Practitioner-Reported Clinical Outcomes

Description	Mean \pm SD
Adequate clinical anaesthesia	4.44 ± 0.50
Onset appropriate	4.54 ± 0.50
Duration sufficient for workflow	4.66 ± 0.48
Supplemental anaesthetic required	2.02 ± 0.82
Complicated administration	2.46 ± 0.50
Procedural efficiency affected	2.38 ± 0.53
Agent appropriateness	4.48 ± 0.50
Technical difficulty	2.42 ± 0.54
Technique modification helpful	4.52 ± 0.51
Standard protocols effective	4.60 ± 0.49

3.4 Comparison Based on Mucosal Condition Status

The Mann-Whitney U test was performed to draw the comparison between anaesthetic-related results of the participants who had the active/symptomatic mucosal conditions and those who had the controlled/remission conditions. The active mucosal participants expressed that they experienced much more pain during the procedure and that they felt more sensitive than the participants who were in remission ($p < 0.05$). Moreover,

the practitioners also noted a much higher need for supplemental anaesthetic administration and greater technical difficulty when it came to active mucosal pathology ($p < 0.05$). These differences notwithstanding, overall adequacy of anaesthesia and completion of the procedure without interruption were high in both groups, demonstrating that mucosal activity status was a determinant of the degree of sensitivity and not overall anaesthetic success.

Table 4. Comparison of Outcomes Based on Mucosal Condition Status

Outcome	Active condition (Mean ± SD)	Controlled condition (Mean ± SD)	p-value
Pain during the procedure	Higher	Lower	<0.05
Increased sensitivity	Higher	Lower	<0.05
Supplemental anaesthetic	Higher	Lower	<0.05
Technical difficulty	Higher	Lower	<0.05

3.5 Relationship Between Patient Pain and Supplemental Anaesthetic Requirement

Rank correlation analysis by Spearman showed a medium positive association between patient-reported pain during the procedure (B4) and practitioner-reported supplemental anaesthetic administration (C4) (0.52, $p = 0.01$). This result is that a higher level of patient-reported discomfort had a stronger relationship with a greater possibility that additional local anaesthetic would be administered by clinicians. The correlation between patient experience and clinical decision-making in this relationship supports the use of patient-reported feedback to inform intraoperative anaesthetic management in people with oral mucosal disorders.

4. Discussion

The results indicated that local anaesthesia was usually considered to be effective in the procedure of prosthodontic and restorative procedures in patients with present oral mucosal disorders. PRO scores showed that they had satisfactory pain management, clinically reasonable onset and they had sufficient anaesthesia duration to complete treatment without interruption. The results of these studies implied that the functional reliability of the standard anaesthetic protocols was maintained even in the conditions of altered mucosa. These observations were also supported by the responses of the practitioners who indicated that clinical difficulties concerning mucosal sensitivity were mostly controllable in normal practice. The fact that procedural interruption was not required was an indicator that most interventions could be performed by anaesthetic depth and stability. Even though oral mucosal disorders were correlated with an increased sensitivity in some instances, the increased sensitivity did not result in a decrease in the procedural results. The meeting of patient and practitioner viewpoints highlighted the clinical strength of local anaesthetic methods commonly used in ensuring comfort, effective workflow, and predictability of treatments in the setting of the prosthodontic and restorative services.

The perceived modulation of pain and adaptive responses to perceived pain found in the current study aligned with the larger psychophysiological patterns of adaptation in clinical populations, where individual variations affected the perceptions of pain and its tolerance [17]. The total sufficiency of the efficacy of anaesthetic was in line with similar clinical trials illustrating successful pain management with the use of lidocaine, articaine, and bupivacaine in the case of an ordinary dental operation [18]. The possibility of keeping the procedure safe even when the tissues were vulnerable was based on the highlights that focused on the control of tissue response and healing factors in non-normal biological states [19]. Positive clinical attitudes

when using articaine reflected the observed effectiveness when using the drug during surgical dental operations that need a dependable anaesthetic depth [20]. The level of patient comfort that was recorded in this study was similar to the pain management outcomes that have been recorded in an endodontic treatment environment where complex sensory responses are involved [21]. Unpredictability of anaesthetic needs reflected reported differences in clinical practice patterns and use of anaesthetics in dental care systems [22]. The evidence regarding the physiological variability was based on the considerations of the altered anaesthetic response under the systemic and biological adjustments [23]. Technical issues on nerve sensitivity reflected known debates on the anatomy of the trigeminal nerve and how it affects the efficacy of anaesthesia [24]. The minimal need for supplemental anaesthesia seen in the present research was in agreement with systematic information that primary infiltration methods are effective in ensuring that anaesthesia is sufficient [25].

A number of shortcomings must also be recognized in reading these results. The questionnaire methodology was based on retrospective self-reporting, which can have created bias in recalling pain and procedural difficulty, based on perception by the patient and assessment by the practitioner. The sampled convenience was a limitation on representativeness and could not be generalized to the broader clinical environment. There were no objective clinical parameters, like latency measurements or anaesthetic plasma levels, and the interpretation was limited to perceived efficacy and not pharmacodynamic validation. The cross-sectional aspect of the assessment did not allow testing of the temporal variability or repeated treatment effects across different sessions of treatment. Also, the distinction between certain forms of oral mucosal disorders was minimal and this may have concealed condition-related anaesthetic problems. In spite of these limitations, the study design was suitable to conduct an exploratory clinical evaluation and give significant information as to the real-life practice of prosthodontics and restorative care without posing an ethical or procedural risk.

The clinical implications of these findings justified the fact that traditional local anaesthetic guidelines were still used in the field of prosthodontic and restorative dentistry with patients with oral mucosal diseases. It is possible that awareness regarding heightened sensitivity and possible variability of anaesthetic response can help clinicians to plan anticipatory treatment and provide patient counselling. The addition of organized patient-reported feedback to standard evaluation might improve individual therapy and procedural ease. The results of the study emphasized the role of clinician flexibility,

such as willingness to use supplemental dosing and make changes in the technique where needed. In the context of prosthodontic and restorative practice, patient comfort leads to the accuracy of the procedure, the use of treatments and further adherence to care. All in all, the study supported the importance of evidence-based, patient-centred anaesthetic approaches to the maximization of outcomes in compromised mucosal settings.

5. Conclusion

The research presents clinical evidence that is relevant to practice in the management of oral mucosal disorders during the process of conduct of the prosthodontic and restorative dental practice. The results show that the adopted local anaesthetic guidelines are usually successful in terms of both satisfactory pain management, sufficient onset, and adequate anaesthesia period, despite altered mucosal status. The clinical procedural comfort and manageability assessment through patient-reported and practitioner-reported assessments revealed a high level of both to help preserve the use of conventional anaesthetic methods in regular prosthodontic and restorative practice. Notably, the findings show that the activity level of oral mucosal diseases has a significant level of influence on anaesthetic experience. Patients with active/symptomatic mucosal conditions were found to have an increased sensitivity and a higher tendency to need supplemental anaesthetic administration as opposed to the patients with controlled /remission conditions. However, these discrepancies did not reflect in the failure or undermined completion of procedures or failure of anaesthetic effectiveness, which highlights the versatility of local anaesthetic methods provided under reasonable clinical care.

The concordance of patient-reported pain with the practitioner-reported anaesthetic supplementation is an aspect that supports the importance of incorporating patient feedback into the decision-making process during the intraoperative stage. The opportunity to change the technique and constant monitoring became the major contributors to ensuring comfort without any violation of the clinical guidelines. This can be applied to clinical practice in terms of what the European Journal of Prosthodontics and Restorative Dentistry provides as a practical contribution to these clinicians dealing with intricate oral mucosal manifestations. The paper underlines the fact that oral mucosal diseases cannot be considered as a contraindication to prosthodontic or restorative care under local anaesthesia, but, instead, should be treated with careful, patient-centred local anaesthetic care.

References

1. Badr N, Aps J. Efficacy of dental local anaesthetics: A review. *Journal of dental anesthesia and pain medicine*. 2018 Dec;18(6):319-32.
2. Wang YH, Wang DR, Liu JY, Pan J. Local anaesthesia in oral and maxillofacial surgery: a review of current opinion. *Journal of Dental Sciences*. 2021 Oct 1;16(4):1055-65.
3. Ferrazzano GF, Di Fabio G, Caruso S, Gatto R, Goyal V, Caruso S. Clinical efficacy and tolerability of a new experimental mucoadhesive patch for topical anaesthesia of oral mucosa in pediatric dentistry. *Journal of Clinical Medicine*. 2024 Mar 8;13(6):1558.
4. Calatayud J, Saraghi M. Local Anaesthesia in Dentistry: A Locoregional Approach. John Wiley & Sons; 2024 Jan 15.
5. Gomide JM, Dantas AC, Figueroba SR, de Jesus Medeiros A, Paiva DF, da Silva de Araújo Cândido CB, Groppo FC, Amorim KD. Comparison of the Efficacy of Maxillary Infiltration with Buffered 1% Articaine Versus Non-buffered 4% Articaine in Healthy Volunteers: A Double-Blinded, Randomized Crossover Study. *Journal of Maxillofacial and Oral Surgery*. 2025 Jun 24:1-8.
6. Jankar JL, Pustake BJ. Split-mouth comparison of anaesthetic efficacy of articaine and lidocaine for extractions of deciduous maxillary teeth: A randomized controlled trial. *International Journal of Clinical Pediatric Dentistry*. 2024 Apr;17(Suppl 1):S6.
7. Saunders DP, Rouleau T, Cheng K, Yarom N, Kandwal A, Joy J, Bektas Kayhan K, van de Wetering M, Brito-Dellan N, Kataoka T, Chiang K. Systematic review of antimicrobials, mucosal coating agents, anaesthetics, and analgesics for the management of oral mucositis in cancer patients and clinical practice guidelines. *Supportive Care in Cancer*. 2020 May;28(5):2473-84.
8. John RR. Local anaesthesia in oral and maxillofacial surgery. In *Oral and Maxillofacial Surgery for the Clinician* 2021 Feb 15 (pp. 61-77). Singapore: Springer Nature Singapore.
9. Rodrigues GA, Bronzato JD. A narrative review on local anaesthetics in dentistry: mechanism of action, characteristics, and clinical considerations. *Journal of Oral and Maxillofacial Anaesthesia*. 2025 Jan 1;4:8.
10. Berry EJ. A review on moderate sedation in pediatric dentistry: a focus on indications, safety and the newest medications. *Journal of Oral and Maxillofacial Anaesthesia*. 2025 Jan 1;4:5.
11. Chitre AP. *Manual of Local Anaesthesia in Dentistry*. JP Medical Ltd; 2016 Feb 29.
12. Reed KL, Malamed SF, Fonner AM. Local anaesthesia part 2: technical considerations. *Anaesthesia progress*. 2012 Jan 1;59(3):127-37.
13. Malamed SF. *Handbook of local anaesthesia-E-book: handbook of local anaesthesia-E-book*. Elsevier Health Sciences; 2019 Mar 28.
14. Martin E, Nimmo A, Lee A, Jennings E. Articaine in dentistry: an overview of the evidence and meta-analysis of the latest randomised controlled trials on articaine safety and efficacy compared to lidocaine for routine dental treatment. *BDJ open*. 2021 Jul 17;7(1):27.
15. Kotowska-Rodziewicz A, Zalewska A, Maciejczyk M. A review of preclinical and clinical studies in support of the role of non-steroidal anti-inflammatory drugs in dentistry. *Medical science monitor: international medical journal of*

experimental and clinical research. 2023 Jun 25;29:e940635-1.

16. NUSSTEIN JM, DRUM M, KHAN AA. Pain Control. Cohen's Pathways of the Pulp: South Asia Edition E-book: Cohen's Pathways of the Pulp: South Asia Edition E-book. 2020 Dec 24:162.

17. Lucas K. Peculiarities of the Interaction of the Indicators of Psychophysiological Adaptation of Modern Students in the Context of the Effective Monitoring of Individual Health of Young Women and Young Men. Wiadomości Lekarskie. 2019 Jan 1.

18. Aggarwal V, Singla M, Miglani S. Comparative evaluation of anaesthetic efficacy of 2% lidocaine, 4% articaine, and 0.5% bupivacaine on inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a prospective, randomized, double-blind clinical trial. Journal of Oral & Facial Pain & Headache. 2017 Apr 1;31(2).

19. Rutkowski R, Thom VT, Minh ND, Metelmann HR. Cold Atmospheric Plasma Treatment and Surgical Site Infections. InTextbook of Good Clinical Practice in Cold Plasma Therapy 2022 Feb 25 (pp. 199-212). Cham: Springer International Publishing.

20. Kumar MM. *Evaluation of Clinical Efficacy of 4% Articaine with 1: 100,000 Epinephrine for Surgical Removal of Impacted Maxillary Canine* (Doctoral dissertation, Ragas Dental College and Hospital, Chennai).

21. Maurya S, Kaur CK, Rajput A, Kumar U. Pain management during endodontic treatment of mandibular posterior teeth: a narrative review. Journal of Oral and Maxillofacial Anaesthesia. 2024 Sep 30;3.

22. Broomhead T, Rodd HD, Baker SR, Jones K, Davies G, White S, Marshman Z. A rapid review of variation in the use of dental general anaesthetics in children. British Dental Journal. 2020 Jul;229(1):31-9.

23. Zhou X, Zhong Y, Pan Z, Zhang J, Pan J. Physiology of pregnancy and oral local anaesthesia considerations. PeerJ. 2023 jun 29;11:e15585.

24. GREGG JM, GIGLIO JA. Trigeminal Nerve Injuries. Oral and Maxillofacial Surgery-E-Book: Oral and Maxillofacial Surgery-E-Book. 2017 Mar 8:354.

25. Gupta A, Sahai A, Aggarwal V, Mehta N, Abraham D, Jala S, Singh A. Anaesthetic efficacy of primary and supplemental buccal/lingual infiltration in patients with irreversible pulpitis in human mandibular molars: a systematic review and meta-analysis. Journal of dental anesthesia and pain medicine. 2021 Jul 30;21(4):283.