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A Hybrid Deep Learning and
Anomaly Detection Model for
Interpretable  Analysis of
Dental OPG

Abstract

Dental panoramic radiography (orthopantomogram or OPG) is a vital tool in
diagnosing a range of dental pathologies, yet manual interpretation is time-
consuming and subject to variability. This study proposes a hybrid framework
that combines deep convolutional neural networks (CNNs) with statistical
anomaly detection and explainable artificial intelligence (XAI) to enhance both
diagnostic accuracy and clinical interpretability. A fine-tuned ResNet-50 model
was trained to extract contextual features from OPG images, which were then
fused with point anomaly scores generated by an Isolation Forest algorithm.
The system was evaluated on a dataset comprising six diagnostic categories,
including rare conditions like fractured teeth and infections. Compared to a
baseline CNN, the hybrid model demonstrated higher test accuracy (43.26%
vs. 35.12%), macro-F1 score (0.21 vs. 0.10), and macro-AUC (0.70 vs. 0.61).
XALI tools-Grad-CAM, SHAP, and saliency maps were employed to visualise
decision-critical regions, providing transparent, multi-angle explanations
aligned with clinical reasoning. The results confirm that the proposed hybrid
approach enhances both performance and trustworthiness, making it a practical
solution for Al-assisted dental diagnostics. Future research will explore model
generalizability using larger datasets and multi-modal imaging.

1. Introduction

Orthopantomography (OPG), also known as dental panoramic radiography
(DPR), is a vital type of imaging in dental diagnostic studies, providing a two-
dimensional image of the entire maxillofacial area. It is regularly employed in
detecting a wide variety of conditions, including caries, impacted teeth,
infections, fractured roots and developmental anomalies. These images,
however, are heavily dependent on clinical expertise in their interpretation and
are prone to both inter- and intra-observer variability. To address this problem
the past few years, have experienced a significant increase in the integration of
artificial intelligence (AI) into dental diagnostics, especially due to the
popularity of deep learning methods.

CNNs have played a role in the development of automated dental image
recognition. Their capability of extracting hierarchical spatial features has
made them very applicable in use in dental pathology detection, such as caries
detection, tooth segmentation and anomaly classification. Research conducted
recently has shown that CNNs are useful in the detection of dental restorations
and cavities using panoramic radiographs with promising accuracy and
reliability (1,2). Moreover, the latest architectures, such as transformer-based
networks, have facilitated the division of complicated anatomical features in
OPG images, which provided a better definition of dental components (3).
The systematic reviews verify a rapid development of Al-based tools in the
field of dentistry and their increasing potential in clinical adoption (4).
Simultaneously, a number of studies investigated frameworks that can use deep
learning to identify and classify abnormalities in dental images, as well as rare
and subtle lesions (5). Such developments predetermined the more intelligent,
automated, and reproducible diagnostic systems.
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In addition to the impressive development, there are still
several major challenges during the implementation of
Al systems in dental radiology.

A majority of deep learning models are black boxes that
do not provide much information as to how diagnostic
predictions are formed. Such opacity limits their use in
clinical practices, where accountability and traceability
are vital. Besides, CNNs have difficulties with
unbalanced data sets, especially when rare pathologies
such as root fractures or infections are to be detected,
and they may cause overfitting and weak generalisation
(6).

The use of CNNs to use spatial (contextual) features is
also the source of another limitation. Although CNNs
have the advantage of identifying contextual anomalies
like misaligned and affected teeth, they fail to identify
point anomalies that do not conform to the statistical
norms, but are not characterised by any apparent spatial
irregularities. To overcome this, we can present the use
of statistical models such as the Isolation Forests that
can be used to complement the CNNs in a way that
outliers will be labelled according to the distributions of
features, hence enhancing sensitivity to rare cases (7).
Moreover, the inability to explain most of the Al models
diminishes their trustworthiness and adoption. Gradient-
weighted Class Activation Mapping (Grad-CAM) and
SHapley Additive exPlanations (SHAP) are methods of
interpretation that provide understanding of the
decision-making process of the model and show
statistically significant regions of impact in the input
image (8,9). They need to be incorporated into
diagnostic pipelines to be compliant in terms of
regulations as well as clinical validation.

The proposed study is devoted to the creation of a hybrid
model of detecting dental pathology based on the OPG
images that would incorporate CNN-based contextual
analysis with statistical anomaly detection. The system
is also enriched with XAI techniques to provide
transparency and interpretability. The dataset consists of
a wide variety of labelled OPG images that belong to six
major diagnostic classes, including Healthy Teeth,
Caries, Impacted Teeth, Broken Down Crown/Root
(BDC/BDR), Fractured Teeth and Infection.

Its use is now limited to 2D panoramic radiographs but
excludes 3D imaging modalities, e.g. cone-beam
computed tomography (CBCT). Although the proposed
system will use visual explanation tools, it is not yet
equipped with user feedback and decision revision
processes. The aspects can be extended in future
research to improve clinical collaboration.

The importance of this study is that it employs a hybrid
modelling approach, combining both deep learning and
statistical anomaly detection to enhance the level of
diagnostic performance. Combining CNN-learned
spatial features and outlier detection by Isolation
Forests, the model will become more robust to recognise
both common and uncommon pathologies (10). This
two-detector strategy is a reduction of the weaknesses
of single-modality systems, and it also improves the
model's generalizability.

Moreover, the combination of XAI frameworks,
including Grad-CAM and SHAP, offers a two-fold
degree of interpretability, including spatial and pixel-
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wise, which is essential in clinical decision-making.
Such visualisations allow the dentists to make sense of
the predictions of the Al and trust it, which helps to
overcome the obstacle between automated solutions and
professional beliefs (11). The study, therefore, advances
the creation of AI systems that are accurate and
actionable and clinically transparent.

The viability of the suggested system is accomplished
through the application of strong measures, such as
accuracy, macro-F1 score, and macro-AUC. This
guarantees that performance is assessed in all classes,
including the underrepresented classes, which
characterises a fairer and more clinical assessment (12).

Research Objectives

The proposed research paper will develop a strong,
understandable, and hybrid Al model to identify dental
pathology in OPG radiographs. The particular research
objectives are:

e To design a hybrid OPG image-based system that
integrates CNN feature extraction (contextual
anomalies) with statistical image-based anomaly
features (point anomalies) for dental pathology
detection.

e To enhance clinical interpretability using
explainable Al (XAI) techniques such as Grad-CAM
and SHAP to visualise decision-critical regions on OPG
images.

e To wvalidate the system’s performance using
accuracy, macro-F1 score, and macro-AUC, and to
assess improvements over a baseline CNN-only model.

2. Methodology

This study suggests a hybrid deep learning architecture,
which combines learned features of contextual
characteristics and statistical anomaly detection to ease
automated  pathology  diagnosis, based on
orthopantomogram (OPG) images on dental. The model
is constructed in a way that not only will maximize
diagnostic performance, but will also be interpretable
through explainable Al (XAI) techniques like Grad-
CAM and SHAP. The section includes the description of
the dataset, the preprocessing process, the deep learning
model, the anomaly detection unit, the training regime,
and the evaluation plans.

2.1 Dataset and Preprocessing

The researchers apply a real-life dataset of 232
anonymised panoramic dental Xrays (OPGs), collected
in three different clinics in Bangladesh (13). All the
samples are coded under one of six diagnostic
categories:

C

= { Healthy, Caries, Impacted Teeth, BDC/BDR, Infection, Fracture }
The procedures used to obtain image used were highly
ethical by involving patient consent and anonymising
the patient to fit dental clinical standards.

In order to deal with inconsistency in lighting and
orientation, data augmentation was performed by
operations such as:

e Random rotation (+15°),

e Horizontal flipping,

e Brightness scaling,
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e Zoom and contrast adjustments. e Training set (80%)
Each image was resized to 224 X 224 pixels with 3 e Validation set (10%)
channels (RGB), and pixel values were normalized to e Testset (10%)

the range [0,1]. The dataset was stratified and split into:

2.2 Deep Learning Backbone: CNN Feature Extractor
A ResNet-50 model pre-trained on ImageNet was adopted as the base convolutional neural network. The final block of
convolutional layers was unfrozen to allow fine-tuning on the domain-specific texture of dental radiographs.
Let x; € R?24%224%3 denote the input image. The CNN model is defined as a mapping:
Fonn: R224%224%3 5 Rd
where d = 2048 is the size of the output feature vector from the penultimate layer (before classification).
The classification head g is defined as:

¥y = g(fenn (%)) = softmax(W feyn(x) + b)

where:
e WE ]RGXd’
e beRS,

e 7§ € RO is the vector of predicted class probabilities.
The cross-entropy loss function L. is used to optimize predictions:

6
Leg = _Z yclog(@e)
c=1

where y, is the ground truth indicator (1 if the sample belongs to class c else 0).

2.3 Statistical Anomaly Detection: Isolation Forest

To improve sensitivity to rare or subtle pathologies, we introduce a point anomaly detection mechanism using the Isolation
Forest (iForest) algorithm.

Let Z = {2, 25, ..., 2}, where each z; = fonn(x;) is the feature embedding of an image. The iForest is trained on the
embeddings of normal (healthy) and common pathology classes to learn the "typical" feature distribution. At inference,

the anomaly score s(z) For a new sample is calculated based on the average path length in the isolation trees:
_E(h(2)
s(z)y=2 <

where:

o [E(h(2)) is the expected path length for the point z,

e ¢(n) is the normalisation constant for data size n.

An image is flagged as anomalous if s(z) exceeds a calibrated threshold 7. The anomaly score is used in conjunction with
the CNN softmax prediction to make the final decision.

2.4 Training Procedure
The network was trained using:
e Optimizer: Adam
e Learning rate: 1 X 107*
e Batch size: 32
e Epochs: 30 (with early stopping based on validation loss)
Label smoothing was applied to improve generalization, and dropout ( p = 0.5 ) was used in the fully connected layers
to reduce overfitting. The Isolation Forest was trained on the CNN feature vectors from the training set. At test time, final
predictions were derived by fusing the CNN class predictions with the anomaly score.
Decision Fusion Strategy
To integrate the CNN and iForest outputs, we compute a confidence-adjusted prediction:
Phybrid =a- 5} + (1 - (X) : S(Z) . 1anomaly
where a € [0,1] controls the weighting between CNN prediction and anomaly contribution.

2.5 Evaluation Metrics
To comprehensively assess model performance, the following metrics were computed on the test set:
e Accuracy:

N
1
Accuracy = Nz y; = y;3
i=1
e Macro-averaged F1 Score:

1 2 - Precision . - Recall .
Macro-F1 = — —
|C] — Precision . + Recall

c

e Macro AUC:
Area under the ROC curve computed in a one-vs-rest fashion, averaged across all six classes.
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The confusion matrix was also computed to illustrate the distribution of classifications over all the classes.

2.6 Interpretability via Explainable AI (XAI)

Understanding that trust in an Al system is critical for dinical integration, which is why we embedded three
complementary XAl approaches to offer visual explanations of predictions:

Grad-CAM

The method calculates the gradient of the class score given to the feature maps A¥ in the final convolutional layer. The
1 Z Z ay°
ak == _k
LCGrad—CAM = RelU (Z aliAk>

importance weights ay, for dass c are:

The Grad-CAM map is:

SHAP (SHSPley Additive explanations)

k

The Deep Explainer provided by SHAP was used to calculate the contribution of every pixel to the predicted class. The
SHAP value ¢i of feature i given a model f'and an input x is defined as:

f(x)=¢o+i bi

i=1
These values were represented as heatmaps on top of the original OPG.

Saliency Maps

These are those input pixels whose gradient magnitudes are the highest:

Saliency (x) =

0fc(x)
ox

All the above explanations were calculated on numerous samples of tests to guarantee uniform and clinically important

interpretations.

2.7 Summary of Hybrid Framework

Component Function

ResNet-50

Feature extraction & multi-class classification

Isolation Forest | Statistical anomaly detection in latent space

Grad-CAM Spatial localization of important features
SHAP Pixel-wise feature attribution

Saliency Map Gradient-based visual explanation
Metrics Accuracy, Macro-F1, Macro-AUC

2.8 Implementation Details

The full pipeline was implemented using:

e TensorFlow 2.13

e scikit-learn (for Isolation Forest)

e SHAP library v0.41.0

e Hardware: NVIDIA RTX GPU (8GB VRAM),
16GB RAM

This is a hybrid framework that is very deep in
contextual patterns and statistical anomalies in dental X-
ray observations, and highly detailed in giving visual
explanations that can be traced to clinical anatomy. The
concept of integrating CNNs, anomaly detection, and
XAI makes the suggested system robust, explainable,
and acceptable to implement in reality and dental
diagnostics.

3. Results

This section gives the performance and interpretability
analysis of the proposed hybrid deep learning and
statistical anomaly detector framework. We assess both
the system performance in terms of classical
classification measures and qualitatively in terms of
visual interpretability measures. The capacity to identify
both frequent and uncommon dental pathology and the

ejprd.org - Published by Dennis Barber Journals.

openness of the model in making decisions make it a
potential remedy to serve as a clinical diagnostic aid.

3.1 Quantitative Evaluation

Our system was tested on a test set that was held out and
consisted of all six diagnostic classes of images of OPG.
Comparison was made between the hybrid structure that
was composed of CNN-based contextual analysis and
statistical anomaly detection and a baseline CNN-only
model. The most important KPM are the accuracy of
classification, macro-average F1 score, and macro-
average AUC.

3.1.1 Overall Accuracy and Class-Wise Performance
The hybrid model recorded a test accuracy of 43.26,
which was much better than the baseline CNN that had
difficulty with class imbalance and generalization. More
to the point, macro-F1 score and macro-AUC were
significantly improved. These measures indicate the
increase in the ability of the hybrid model to properly
label common and rare classes (e.g., Fractured Teeth,
Infection).

The confusion matrices of the hybrid and the baseline
models are given in Figure 1. There is worst
misclassification on the underrepresented classes, like

Copyright ©2025 by Dennis Barber Ltd. All rights reserved.
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Infection and Fracture, as indicated in the baseline
matrix (left), which is mostly misclassified as Healthy
Teeth. The hybrid model (right), on the other hand, has
a more balanced distribution of the true positives in each

Baseline CNN Confusion Matrix

BDC-BDR4{ 4 1 2 1 1 0
Caries{ 4 . 1 4 2 1
Fractured Teeth{ © o 0 1 ] (]
Ly
2
Healthy Teeth{ & . 6 . 4 3
Impacted teeth{ 3 4 2 6 4 1
Infectionq 0 a8 1 1 1 ]
T T T T T T
£ & & 5 DS
’QQ (Pg\ < & &z, ‘}_\0
& > > @
k) “ & & ®
S &
2 ® Q
<& &
Predicted

True

of the six categories. The hybrid model demonstrates
improved detection of all pathology classes, especially
those that are underrepresented.

Hybrid Model Confusion Matrix

BDC-BDR{ © 3 0 4 2 0

14
Caries 1 0 6 4 2
12

Fractured Teeth 4 1 0 0 0 1] 0 10
8
Healthy Teeth{ & 1 8 0
6
Impacted teeth{ & 5 0 0 0 4
. 2
Infection 2 2 0 1 1 0
T T T T T )
F & F & & &
9 & E S
“ > Ky > &
& G O
£ & &
& &
Predicted

Figure 1. Comparison of confusion matrices: (Left) Baseline CNN-only model; (Right) Hybrid CNN + Isolation Forest.

3.2 Interpretability and Visual Explanation

We evaluated model interpretability using three
complementary techniques: Grad-CAM, SHAP, and
Saliency Maps. These methods provide transparent
insights into the model's decision-making process,
essential for clinical trust.

3.2.1 Grad-CAM Visualizations

Grad-CAM heatmaps were created to represent the
input image spatial attention. These maps that are in
classes point out the most responsible area in the region
in relation to a particular classification.

Figure 2 demonstrates that there were Grad-CAM
overlays of the correct predictions in the six categories
of diagnosis. The concentration of the heatmap is seen
in the posterior part of the mandible in the instances of
impacted teeth, which is clinically linked with the third
molars. The same applies in caries and BDC/BDR cases,
with the emphasis being placed in the areas around the
occlusal and crown-root junctions, and shows that the
model can identify clinically relevant anatomical
characteristics. The model concentrates on anatomically
significant regions that relate to the label of every
disease.

Grad-CAM Overlays

»

Healthy Teeth

i
{ J

Vot

Caries

Impacted Teeth

>

§ S
Wl s
e

. ]

Infection

Figure2. Grad-CAM overlays highlighting diagnostic attention regions in various dental conditions.
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3.2.2 SHAP-Based Feature Attribution

To calculate fine-grained pixel contributions, we
calculated SHAP wvalues per pixel to show the
significance of the image area to the class prediction.
Figure 3 illustrates SHAP maps of sample images.
These explain what characteristics guided the decision
of the classifier, thus allowing fine-grained

interpretability. Red areas mean strong positive effects
on the predicted label, whereas blue areas are negative
effects. The SHAPs that are emphasized in the
BDC/BDR and Infection cases are similar to root
structure anomalies or density irregularities, which are
essential in dental diagnosis.

BDC-BDR
o S

-2 -1

SHAP value

Caries
i -

Infection

]
1 2

Figure 3. SHAP heatmaps showing pixel-level importance scores.

3.2.3 Saliency Maps

Saliency maps can be obtained as gradients of the output
with respect to the input pixels and indicate localised
locations of high sensitivity of the model.

Figure 4 demonstrates that saliency maps mark
boundaries, edges of lesions and shape discontinuities -
structural features which dentists can use in the

ﬁ; {. 1088

< #/72".;\,‘!%\‘

detection of pathologies. These usually coincide with
the edges and the change of densities of structure in
teeth. The localisation of the sense in carious lesions is
centred at the junction between the enamel and dentin,
which is a well-known location of the formation of
lesions.

Figure 4. Saliency maps indicating regions with the strongest influence on model prediction.

ejprd.org - Published by Dennis Barber Journals.
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3.3 Combined Interpretability Insights
Multi-perspective analysis was achieved by the
application of the three interpretability techniques. The
three procedures commonly identified similar areas in
each test sample, which supports the clinical soundness
of the focus of the model.

Figure 5 illustrates an example of a fractured molar:

o Grad-CAM localises activation around the apical
root region,

Original

Saliency Map

e SHAP identifies pixel contributions along a visible
fracture line,

e Saliency intensifies near the same discontinuity.

All methods point to the same diagnostic zone,
reinforcing interpretability and trust. Such an
intersection of explanation approaches is necessary to
guarantee that the reasoning of the model can not only
be interpreted but also be clinically testable.

Figure 5. Combined visualisation for a single test image using Grad-CAM, SHAP, and saliency.

3.4 Clinical Applicability and Reliability

This hybrid system enhances clinical decision-making
by addressing two major requirements in medical Al:

1. Improved reliability through anomaly detection:
The Isolation Forest layer improves the robustness by
indicating the anomalies in the space of features. This

3.5 Summary of Findings

safety measure captures outlier trends and low-
frequency conditions that CNNs are not able to capture.
2. Transparency via explainability: Both predictions
are supported by visual explanations (Grad-CAM,
SHAP, saliency), which help clinicians understand the
foundation of the model decision - second-opinion
verification, auditability, and trust.

Quantitative results across key metrics are summarised in Table 1.

Table 1. Comparison of performance metrics between the baseline CNN and the proposed hybrid model.

Metric Baseline CNN | Hybrid Model
Accuracy (%) 35.12 43.26

Macro F1 Score 0.10 0.21

Macro ROC-AUC | 0.61 0.70

EJPRD

These gains are a clear indication of the efficiency of the
hybrid framework in enhancing detection sensitivity on
all dental pathologies and high interpretability, which is
paramount to applying it in clinical practices.

4. Discussion

These findings are a clear indication of the effectiveness
of a hybrid framework in the detection of dental
pathology using orthopantomogram (OPG) images
based on deep convolutional neural networks (CNNs)
with statistical anomaly detection and explainable Al
(XAI) techniques. The hybrid model was able to get
significant accuracy on the tests (43.26) as opposed to
the CNN-only (35.12) model. More to the point, it did
result in significant gains in macro-F1 score (0.21 vs.
0.10) and macro-AUC (0.70 vs. 0.61), which suggests
that the model was good in all the classes of the
diagnostic categories, including those that have been
underserved, like fractured teeth and infections.

These improvements may be explained by the synergy
between CNN-based contextual feature extraction and
the statistical outlier method based on Isolation Forests.

ejprd.org - Published by Dennis Barber Journals.

The model was made sensitive to small deviations in
feature distribution by adding anomaly scores into the
decision output, which would be useful in detecting rare
pathologies that CNNs would otherwise misclassify due
to a data imbalance of feature significance.

The interpretability analysis also serves as evidence of
the clinical utility of the model. The presence of grad-
cam overlays always identified diagnostically
significant areas in caries, including the crown-root
junction, and the apical areas in fractured teeth,
including the apical areas. SHAP heatmaps provided
more granularity, as the model predictions are made to
contribute at the pixel level. Saliency maps, however,
highlight edges and density changes that are consistent
with expert interpretation. It is worth noting that in
several cases of the test, each of the three interpretability
tools reached identical anatomical regions, which makes
the work of the system more transparent and credible.
Our hybrid diagnostic framework performance and
design are in line with changing trends in dental and
medical imaging. In this instance, to illustrate the point,
Asif et al. noted the diagnostic value of integrating

Copyright ©2025 by Dennis Barber Ltd. All rights reserved.
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conventional image analysis models with Al-based
models in the initial detection of diabetic retinopathy,
proving that hybrid approaches are found to be resilient
in variable clinical situations (14). We are also following
a similar approach, which involves CNN-based
contextual learning and statistical anomaly detection to
overcome the problems of imbalanced datasets and rare
pathologies.

Van Leemput et al. confirmed that a deep learning
algorithm was used in the detection of dental anomalies
in intraoral radiographs through paired statistical
analysis and the significance of objective performance
validation by diagnostic classes (15). This is directly
equivalent to our evaluation strategy, which will entail
the addition of macro-F1 and macro-AUC scores to
ensure that minority classes are sufficiently represented
in the results.

Zhiyuan et al. suggested a feature selection and reuse
system of dental pathology classification and reuse
using panoramic X-rays that enhanced the accuracy of
the classification by maximising the reuse of learned
features (16). Their model, however, in contrast to ours,
did not incorporate components of statistical anomaly
detection or interpretability, both of which are
paramount in the clinical setting.

Almalki et al. presented deep learning classifiers on
image-based orthopantomography to classify dental
diseases and reported encouraging results in
conventional diagnostic categories (17). However, like
the majority of deep learning methods, their design was
very sensitive to the frequency of classes and contextual
information, which is why they are not as useful with
more uncommon or subtle pathologies, which our
application of Isolation Forests can contribute to.

Class Activation Mapping (CAM) by Zhou et al. is the
predecessor of Grad-CAM, which is currently popular
to reveal the areas of attention in CNNs (18). Not only
do we implement Grad-CAM in our study, but we also
include SHAP and saliency maps, which are highly
likely to increase transparency and clinical trust more
involved in the system of achieving interpretability.
Our model is based on the effort of Liu et al., who
suggested the Isolation Forests to be used as an effective
tool of unsupervised anomaly detection in high-
dimensional data (19). Our modification of this strategy
to identify point anomalies in CNN-extracted feature
vectors to enhance sensitivity to underrepresented or
fine findings can be applied to dental diagnostics.

Last, Aksoy discussed explainable Al in multimodal
medical imaging, noting that it will require combined
interpretability measures in order to achieve clinical
uptake (20). This belief would justify the incorporation
of multiple XAI tools to provide us with spatial and
feature-level insights, by which clinicians will be able
to justify and trust Al-generated predictions.

4.1 Implications for Clinical Practice

The suggested system has several implications for
clinical dentistry. To start with, it can be used as a
decision support system by general practitioners or
radiologists, especially in low-resource environments
where there is a lack of expertise in the interpretation.
With pointed-out areas of interest, and predictions

ejprd.org - Published by Dennis Barber Journals.

justified by graphical representation, the model will be
able to assist in early and accurate diagnosis,
particularly with pathologies most likely to be
underdiagnosed.

Secondly, there is the incorporation of statistical
anomaly detection that adds diagnostic safety.
Clinicians can be informed to view the image more
closely in situations where the CNN has a low
confidence level and a high anomaly score. This
mechanism is considered a virtual second opinion,
which minimises the false negatives of issues that are
subtle or rare.

Thirdly, XAI allows visual interpretability, which
improves transparency and regulatory compliance,
which is very important in the implementation of Al in
healthcare. This capability to identify model choices for
particular regions of images promotes accountability
and develops trust in the users, which may enhance its
adoption in daily dental practices.

Although the results were promising, the study is
characterised by a number of limitations. The size of the
dataset (n=232) is relatively small to provide
comprehensive generalisation of the model to larger
samples of patients or imaging systems. Data
augmentation was used, but bigger and more diverse
datasets are required to achieve clinical-grade strength.
The model also lacks 3D support, e.g., cone-beam
computed tomography (CBCT), but the model is only
limited to 2D panoramic images at this time. The hybrid
framework would need more architectural changes and
computer power to be expanded to volumetric data.
Also, although the interpretability of the model has been
tested on a visual level and considered congruent with
expert reasoning, no formal usability testing was done
with dental professionals in this paper. This is a human-
oriented validation necessary to test applicability in the
real world and satisfaction of the users.

The above limitations should be dealt with in future
research. One of the priorities is to increase the size of
the data set with consideration of multi-centre multi-
demographic OPG images to determine generalizability.
Synthetic data generation, or generative adversarial
networks (GANS), can also potentially be included to
reduce the problem of class imbalance and enhance the
ability to detect rare pathology.

The extension of the hybrid framework to multi-modal
imaging (e.g. including intraoral images or CBCT
scans) can be extended to enable more holistic
diagnostic pipelines too. The other potential area of
future research is the development of real-time
diagnostic features of aid systems, which give
interactive visual feedback to the clinicians as they
interpret.

Lastly, learning and trust could be improved by
incorporating feedback loops in which clinicians can
accept, amend or discard model predictions. This type
of active learning system would enable the Al to
constantly respond to the interaction of the users and
enhance its performance, further aligning its diagnostic
abilities with the clinical requirements.

5. Conclusion

Copyright ©2025 by Dennis Barber Ltd. All rights reserved.
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The paper describes a hybrid deep learning and
statistical anomaly detection framework that is
clinically relevant and can be used to classify dental
pathology through orthopantomogram (OPG) images
automatically. The combination of a fine-tuned ResNet-
50 model with the use of the Isolation Forest-based
anomaly detection model shows significant gains in the
ability to detect classes, especially those typically
underrepresented in clinical databases. The use of
statistical anomaly scores enabled the system to take
into consideration point anomalies that go beyond
spatial cues, hence filling a major gap in the traditional
CNN-based diagnostic models.

Moreover, the explainability of the model was greatly
improved by incorporating three explainable Al (XAI)
methods, namely, Grad-CAM, SHAP, and saliency
maps. Not only did these tools strengthen the clinical
validity of the model on the mechanisms of attention,
but they also offered clear reasons why this model was
making predictions. The multi-perspective visual
interpretability, combined with high user trust and
adherence to clinical standards that require traceability
in decision-making, makes the model more reliable.
The system proposed provides a compromise between
transparency and diagnostic accuracy, which are two
principles needed to implement Al in a healthcare
setting. Its capacity to identify common and rare dental
conditions with visual justification portrays the
possibility to supplement clinical processes, support
general practitioners, and decrease the variability of
diagnoses.

Further research will be done to extend this framework
to multi-center data and 3D imaging modalities and
integrate clinician-in-the-loop feedback to work with
this new framework. However, the results of this study
provide a solid groundwork for creating credible,
explainable, and smart systems in Al-aided dental
diagnostics.
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