
 

 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •   EJPRD 
 

    Copyright ©2025 by Dennis 

    

ejprd.org - Published by Dennis Barber Journals.

Barber Ltd. All rights reserved 

 

     
    
   

European Journal of Prosthodontics and Restorative Dentistry (2026) 34, (1) 25–34

A Hybrid Deep Learning and 
Anomaly Detection Model for 
Interpretable Analysis of 
Dental OPG 
 

         

Abstract 

Dental panoramic radiography (orthopantomogram or OPG) is a vital tool in 

diagnosing a range of dental pathologies, yet manual interpretation is time-

consuming and subject to variability. This study proposes a hybrid framework 

that combines deep convolutional neural networks (CNNs) with statistical 

anomaly detection and explainable artificial intelligence (XAI) to enhance both 

diagnostic accuracy and clinical interpretability. A fine-tuned ResNet-50 model 

was trained to extract contextual features from OPG images, which were then 

fused with point anomaly scores generated by an Isolation Forest algorithm. 

The system was evaluated on a dataset comprising six diagnostic categories, 

including rare conditions like fractured teeth and infections. Compared to a 

baseline CNN, the hybrid model demonstrated higher test accuracy (43.26% 

vs. 35.12%), macro-F1 score (0.21 vs. 0.10), and macro-AUC (0.70 vs. 0.61). 

XAI tools-Grad-CAM, SHAP, and saliency maps were employed to visualise 

decision-critical regions, providing transparent, multi-angle explanations 

aligned with clinical reasoning. The results confirm that the proposed hybrid 

approach enhances both performance and trustworthiness, making it a practical 

solution for AI-assisted dental diagnostics. Future research will explore model 

generalizability using larger datasets and multi-modal imaging. 

 

 

1. Introduction 

Orthopantomography (OPG), also known as dental panoramic radiography 

(DPR), is a vital type of imaging in dental diagnostic studies, providing a two-

dimensional image of the entire maxillofacial area. It is regularly employed in 

detecting a wide variety of conditions, including caries, impacted teeth, 

infections, fractured roots and developmental anomalies. These images, 

however, are heavily dependent on clinical expertise in their interpretation and 

are prone to both inter- and intra-observer variability. To address this problem 

the past few years, have experienced a significant increase in the integration of 

artificial intelligence (AI) into dental diagnostics, especially due to the 

popularity of deep learning methods. 

CNNs have played a role in the development of automated dental image 

recognition. Their capability of extracting hierarchical spatial features has 

made them very applicable in use in dental pathology detection, such as caries 

detection, tooth segmentation and anomaly classification. Research conducted 

recently has shown that CNNs are useful in the detection of dental restorations 

and cavities using panoramic radiographs with promising accuracy and 

reliability (1,2). Moreover, the latest architectures, such as transformer-based 

networks, have facilitated the division of complicated anatomical features in 

OPG images, which provided a better definition of dental components (3). 

The systematic reviews verify a rapid development of AI-based tools in the 

field of dentistry and their increasing potential in clinical adoption (4). 

Simultaneously, a number of studies investigated frameworks that can use deep 

learning to identify and classify abnormalities in dental images, as well as rare 

and subtle lesions (5). Such developments predetermined the more intelligent, 

automated, and reproducible diagnostic systems. 
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In addition to the impressive development, there are still 

several major challenges during the implementation of 

AI systems in dental radiology.  

A majority of deep learning models are black boxes that 

do not provide much information as to how diagnostic 

predictions are formed. Such opacity limits their use in 

clinical practices, where accountability and traceability 

are vital. Besides, CNNs have difficulties with 

unbalanced data sets, especially when rare pathologies 

such as root fractures or infections are to be detected, 

and they may cause overfitting and weak generalisation 

(6). 

The use of CNNs to use spatial (contextual) features is 

also the source of another limitation. Although CNNs 

have the advantage of identifying contextual anomalies 

like misaligned and affected teeth, they fail to identify 

point anomalies that do not conform to the statistical 

norms, but are not characterised by any apparent spatial 

irregularities. To overcome this, we can present the use 

of statistical models such as the Isolation Forests that 

can be used to complement the CNNs in a way that 

outliers will be labelled according to the distributions of 

features, hence enhancing sensitivity to rare cases (7). 

Moreover, the inability to explain most of the AI models 

diminishes their trustworthiness and adoption. Gradient-

weighted Class Activation Mapping (Grad-CAM) and 

SHapley Additive exPlanations (SHAP) are methods of 

interpretation that provide understanding of the 

decision-making process of the model and show 

statistically significant regions of impact in the input 

image (8,9). They need to be incorporated into 

diagnostic pipelines to be compliant in terms of 

regulations as well as clinical validation. 

The proposed study is devoted to the creation of a hybrid 

model of detecting dental pathology based on the OPG 

images that would incorporate CNN-based contextual 

analysis with statistical anomaly detection. The system 

is also enriched with XAI techniques to provide 

transparency and interpretability. The dataset consists of 

a wide variety of labelled OPG images that belong to six 

major diagnostic classes, including Healthy Teeth, 

Caries, Impacted Teeth, Broken Down Crown/Root 

(BDC/BDR), Fractured Teeth and Infection. 

Its use is now limited to 2D panoramic radiographs but 

excludes 3D imaging modalities, e.g. cone-beam 

computed tomography (CBCT). Although the proposed 

system will use visual explanation tools, it is not yet 

equipped with user feedback and decision revision 

processes. The aspects can be extended in future 

research to improve clinical collaboration. 

The importance of this study is that it employs a hybrid 

modelling approach, combining both deep learning and 

statistical anomaly detection to enhance the level of 

diagnostic performance. Combining CNN-learned 

spatial features and outlier detection by Isolation 

Forests, the model will become more robust to recognise 

both common and uncommon pathologies (10). This 

two-detector strategy is a reduction of the weaknesses 

of single-modality systems, and it also improves the 

model's generalizability. 

Moreover, the combination of XAI frameworks, 

including Grad-CAM and SHAP, offers a two-fold 

degree of interpretability, including spatial and pixel-

wise, which is essential in clinical decision-making. 

Such visualisations allow the dentists to make sense of 

the predictions of the AI and trust it, which helps to 

overcome the obstacle between automated solutions and 

professional beliefs (11). The study, therefore, advances 

the creation of AI systems that are accurate and 

actionable and clinically transparent. 

The viability of the suggested system is accomplished 

through the application of strong measures, such as 

accuracy, macro-F1 score, and macro-AUC. This 

guarantees that performance is assessed in all classes, 

including the underrepresented classes, which 

characterises a fairer and more clinical assessment (12). 

 

Research Objectives 

The proposed research paper will develop a strong, 

understandable, and hybrid AI model to identify dental 

pathology in OPG radiographs. The particular research 

objectives are: 

 To design a hybrid OPG image-based system that 

(contextualextractionfeatureCNNintegrates

imageanomalies) statisticalwith - anomalybased

dentalfor(pointfeatures pathologyanomalies)

detection. 

 usinginterpretabilityclinicalenhanceTo

explainable AI (XAI) techniques such as Grad-CAM 

and SHAP to visualise decision-critical regions on OPG 

images. 

 systemthevalidateTo ’ usingperformances

accuracy, macro-F1 score, and macro-AUC, and to 

assess improvements over a baseline CNN-only model. 

 

2. Methodology 

This study suggests a hybrid deep learning architecture, 

which combines learned features of contextual 

characteristics and statistical anomaly detection to ease 

automated pathology diagnosis, based on 

orthopantomogram (OPG) images on dental. The model 

is constructed in a way that not only will maximize 

diagnostic performance, but will also be interpretable 

through explainable AI (XAI) techniques like Grad-

CAM and SHAP. The section includes the description of 

the dataset, the preprocessing process, the deep learning 

model, the anomaly detection unit, the training regime, 

and the evaluation plans. 

 

2.1 Dataset and Preprocessing 

The researchers apply a real-life dataset of 232 

anonymised panoramic dental Xrays (OPGs), collected 

in three different clinics in Bangladesh (13). All the 

samples are coded under one of six diagnostic 

categories: 
𝐶
= { Healthy, Caries, Impacted Teeth, BDC/BDR, Infection, Fracture } 

The procedures used to obtain image used were highly 

ethical by involving patient consent and anonymising 

the patient to fit dental clinical standards. 

In order to deal with inconsistency in lighting and 

orientation, data augmentation was performed by 

operations such as: 

 Random rotation (±𝟏𝟓∘), 
 Horizontal flipping, 

 Brightness scaling, 
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 Zoom and contrast adjustments. 

Each image was resized to 224 × 224 pixels with 3 

channels (RGB), and pixel values were normalized to 

the range [0,1]. The dataset was stratified and split into: 

 Training set (80%) 

 Validation set (10%) 

 Test set (10%) 

 

2.2 Deep Learning Backbone: CNN Feature Extractor 

A ResNet-50 model pre-trained on ImageNet was adopted as the base convolutional neural network. The final block of 

convolutional layers was unfrozen to allow fine-tuning on the domain-specific texture of dental radiographs. 

Let 𝑥𝑖 ∈ ℝ224×224×3 denote the input image. The CNN model is defined as a mapping: 

𝑓CNN: ℝ
224×224×3 → ℝ𝑑 

where 𝑑 = 2048 is the size of the output feature vector from the penultimate layer (before classification). 

The classification head 𝑔 is defined as: 

𝑦̂ = 𝑔(𝑓CNN(𝑥)) = softmax(𝑊𝑓CNN(𝑥) + 𝑏) 
where: 

 𝑊 ∈ ℝ6×𝑑, 

 𝑏 ∈ ℝ6, 

 𝑦̂ ∈ ℝ6 is the vector of predicted class probabilities. 

The cross-entropy loss function ℒ𝐶𝐸  is used to optimize predictions: 

ℒ𝐶𝐸 = −∑  

6

𝑐=1

𝑦𝑐log⁡(𝑦̂𝑐) 

where 𝑦𝑐 is the ground truth indicator (1 if the sample belongs to class 𝑐,else 0). 

 

2.3 Statistical Anomaly Detection: Isolation Forest 

To improve sensitivity to rare or subtle pathologies, we introduce a point anomaly detection mechanism using the Isolation 

Forest (iForest) algorithm. 

Let 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛}, where each 𝑧𝑖 = 𝑓CNN(𝑥𝑖) is the feature embedding of an image. The iForest is trained on the 

embeddings of normal (healthy) and common pathology classes to learn the "typical" feature distribution. At inference, 

the anomaly score 𝑠(𝑧) For a new sample is calculated based on the average path length in the isolation trees: 

𝑠(𝑧) = 2
−
𝐸(ℎ(𝑧))
𝑐(𝑛)  

where: 

 𝐸(ℎ(𝑧)) is the expected path length for the point 𝑧, 

 𝑐(𝑛) is the normalisation constant for data size 𝑛. 

An image is flagged as anomalous if 𝑠(𝑧) exceeds a calibrated threshold 𝜏. The anomaly score is used in conjunction with 

the CNN softmax prediction to make the final decision. 

 

2.4 Training Procedure 

The network was trained using: 

 Optimizer: Adam 

 Learning rate: 1 × 10−4 

 Batch size: 32 

 Epochs: 30 (with early stopping based on validation loss) 

Label smoothing was applied to improve generalization, and dropout ( 𝑝 = 0.5 ) was used in the fully connected layers 

to reduce overfitting. The Isolation Forest was trained on the CNN feature vectors from the training set. At test time, final 

predictions were derived by fusing the CNN class predictions with the anomaly score. 

Decision Fusion Strategy 

To integrate the CNN and iForest outputs, we compute a confidence-adjusted prediction: 

𝑃hybrid = 𝛼 ⋅ 𝑦̂ + (1 − 𝛼) ⋅ 𝑠(𝑧) ⋅ 1anomaly  

where 𝛼 ∈ [0,1] controls the weighting between CNN prediction and anomaly contribution. 

 

2.5 Evaluation Metrics 

To comprehensively assess model performance, the following metrics were computed on the test set: 

 Accuracy: 

Accuracy =
1

𝑁
∑  

𝑁

𝑖=1

1{𝑦̂𝑖 = 𝑦𝑖} 

 Macro-averaged F1 Score: 

Macro-F1 =
1

|𝐶|
∑  

𝑐∈𝐶

2 ⋅  Precision 𝑐 ⋅  Recall 𝑐

 Precision 𝑐 +  Recall 𝑐
 

 Macro AUC: 

Area under the ROC curve computed in a one-vs-rest fashion, averaged across all six classes. 
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The confusion matrix was also computed to illustrate the distribution of classifications over all the classes.

2.6 Interpretability via Explainable AI (XAI)

Understanding that trust in an AI system is critical for dinical integration, which is why we embedded three 
complementary XAI approaches to offer visual explanations of predictions:

Grad-CAM

The method calculates the gradient of the class score given to the feature maps Ak in the final convolutional layer. The

importance weights 𝛼𝑘
𝑐 for dass 𝑐 are: 

𝛼𝑘
𝑐 =

1

𝑍
∑  

𝑖

∑ 

𝑗

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘  

The Grad-CAM map is: 

𝐿Grad−CAM
𝑐 = ReLU(∑  

𝑘

 𝛼𝑘
𝑐𝐴𝑘) 

SHAP (SHSPley Additive explanations) 

The Deep Explainer provided by SHAP was used to calculate the contribution of every pixel to the predicted class. The 

SHAP value 𝜙i of feature i given a model f and an input x is defined as: 

𝑓(𝑥) = 𝜙0 +∑  

𝑀

𝑖=1

𝜙𝑖 

These values were represented as heatmaps on top of the original OPG. 

Saliency Maps 

These are those input pixels whose gradient magnitudes are the highest: 

Saliency (𝑥) = |
𝜕𝑓𝑐(𝑥)

𝜕𝑥
| 

All the above explanations were calculated on numerous samples of tests to guarantee uniform and clinically important 

interpretations. 

 

2.7 Summary of Hybrid Framework 

Component Function 

ResNet-50 Feature extraction & multi-class classification 

Isolation Forest Statistical anomaly detection in latent space 

Grad-CAM Spatial localization of important features 

SHAP Pixel-wise feature attribution 

Saliency Map Gradient-based visual explanation 

Metrics Accuracy, Macro-F1, Macro-AUC 

 

2.8 Implementation Details 

The full pipeline was implemented using: 

 TensorFlow 2.13 

 scikit-learn (for Isolation Forest) 

 SHAP library v0.41.0 

 Hardware: NVIDIA RTX GPU (8GB VRAM), 

16GB RAM 

This is a hybrid framework that is very deep in 

contextual patterns and statistical anomalies in dental X-

ray observations, and highly detailed in giving visual 

explanations that can be traced to clinical anatomy. The 

concept of integrating CNNs, anomaly detection, and 

XAI makes the suggested system robust, explainable, 

and acceptable to implement in reality and dental 

diagnostics. 

 

3. Results 

This section gives the performance and interpretability 

analysis of the proposed hybrid deep learning and 

statistical anomaly detector framework. We assess both 

the system performance in terms of classical 

classification measures and qualitatively in terms of 

visual interpretability measures. The capacity to identify 

both frequent and uncommon dental pathology and the 

openness of the model in making decisions make it a 

potential remedy to serve as a clinical diagnostic aid. 

 

3.1 Quantitative Evaluation 

Our system was tested on a test set that was held out and 

consisted of all six diagnostic classes of images of OPG. 

Comparison was made between the hybrid structure that 

was composed of CNN-based contextual analysis and 

statistical anomaly detection and a baseline CNN-only 

model. The most important KPM are the accuracy of 

classification, macro-average F1 score, and macro-

average AUC. 

 

3.1.1 Overall Accuracy and Class-Wise Performance 

The hybrid model recorded a test accuracy of 43.26, 

which was much better than the baseline CNN that had 

difficulty with class imbalance and generalization. More 

to the point, macro-F1 score and macro-AUC were 

significantly improved. These measures indicate the 

increase in the ability of the hybrid model to properly 

label common and rare classes (e.g., Fractured Teeth, 

Infection). 

The confusion matrices of the hybrid and the baseline 

models are given in Figure 1. There is worst 

misclassification on the underrepresented classes, like 
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Infection and Fracture, as indicated in the baseline 

matrix (left), which is mostly misclassified as Healthy 

Teeth. The hybrid model (right), on the other hand, has 

a more balanced distribution of the true positives in each 

of the six categories. The hybrid model demonstrates 

improved detection of all pathology classes, especially 

those that are underrepresented. 

 

 
Figure 1. Comparison of confusion matrices: (Left) Baseline CNN-only model; (Right) Hybrid CNN + Isolation Forest. 

 

3.2 Interpretability and Visual Explanation 

We evaluated model interpretability using three 

complementary techniques: Grad-CAM, SHAP, and 

Saliency Maps. These methods provide transparent 

insights into the model's decision-making process, 

essential for clinical trust. 

 

3.2.1 Grad-CAM Visualizations 

Grad-CAM heatmaps were created to represent the 

input image spatial attention. These maps that are in 

classes point out the most responsible area in the region 

in relation to a particular classification. 

Figure 2 demonstrates that there were Grad-CAM 

overlays of the correct predictions in the six categories 

of diagnosis. The concentration of the heatmap is seen 

in the posterior part of the mandible in the instances of 

impacted teeth, which is clinically linked with the third 

molars. The same applies in caries and BDC/BDR cases, 

with the emphasis being placed in the areas around the 

occlusal and crown-root junctions, and shows that the 

model can identify clinically relevant anatomical 

characteristics. The model concentrates on anatomically 

significant regions that relate to the label of every 

disease. 

 

 
Figure2. Grad-CAM overlays highlighting diagnostic attention regions in various dental conditions.
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3.2.2 SHAP-Based Feature Attribution 

To calculate fine-grained pixel contributions, we 

calculated SHAP values per pixel to show the 

significance of the image area to the class prediction. 

Figure 3 illustrates SHAP maps of sample images. 

These explain what characteristics guided the decision 

of the classifier, thus allowing fine-grained 

interpretability. Red areas mean strong positive effects 

on the predicted label, whereas blue areas are negative 

effects. The SHAPs that are emphasized in the 

BDC/BDR and Infection cases are similar to root 

structure anomalies or density irregularities, which are 

essential in dental diagnosis. 

 

 
Figure 3. SHAP heatmaps showing pixel-level importance scores. 

 

3.2.3 Saliency Maps 

Saliency maps can be obtained as gradients of the output 

with respect to the input pixels and indicate localised 

locations of high sensitivity of the model. 

Figure 4 demonstrates that saliency maps mark 

boundaries, edges of lesions and shape discontinuities - 

structural features which dentists can use in the 

detection of pathologies. These usually coincide with 

the edges and the change of densities of structure in 

teeth. The localisation of the sense in carious lesions is 

centred at the junction between the enamel and dentin, 

which is a well-known location of the formation of 

lesions. 

 

 
 Figure 4. Saliency maps indicating regions with the strongest influence on model prediction.
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3.3 Combined Interpretability Insights 

Multi-perspective analysis was achieved by the 

application of the three interpretability techniques. The 

three procedures commonly identified similar areas in 

each test sample, which supports the clinical soundness 

of the focus of the model. 

Figure 5 illustrates an example of a fractured molar: 

 Grad-CAM localises activation around the apical 

root region, 

 SHAP identifies pixel contributions along a visible 

fracture line, 

 Saliency intensifies near the same discontinuity. 

All methods point to the same diagnostic zone, 

reinforcing interpretability and trust. Such an 

intersection of explanation approaches is necessary to 

guarantee that the reasoning of the model can not only 

be interpreted but also be clinically testable. 

 

 
Figure 5. Combined visualisation for a single test image using Grad-CAM, SHAP, and saliency. 

 

3.4 Clinical Applicability and Reliability 

This hybrid system enhances clinical decision-making 

by addressing two major requirements in medical AI: 

1. Improved reliability through anomaly detection: 

The Isolation Forest layer improves the robustness by 

indicating the anomalies in the space of features. This 

safety measure captures outlier trends and low-

frequency conditions that CNNs are not able to capture. 

2. Transparency via explainability: Both predictions 

are supported by visual explanations (Grad-CAM, 

SHAP, saliency), which help clinicians understand the 

foundation of the model decision - second-opinion 

verification, auditability, and trust. 

 

3.5 Summary of Findings 

Quantitative results across key metrics are summarised in Table 1. 

 

Table 1. Comparison of performance metrics between the baseline CNN and the proposed hybrid model. 

Metric Baseline CNN Hybrid Model 

Accuracy (%) 35.12 43.26 

Macro F1 Score 0.10 0.21 

Macro ROC-AUC 0.61 0.70 

 

These gains are a clear indication of the efficiency of the 

hybrid framework in enhancing detection sensitivity on 

all dental pathologies and high interpretability, which is 

paramount to applying it in clinical practices. 

 

4. Discussion 

These findings are a clear indication of the effectiveness 

of a hybrid framework in the detection of dental 

pathology using orthopantomogram (OPG) images 

based on deep convolutional neural networks (CNNs) 

with statistical anomaly detection and explainable AI 

(XAI) techniques. The hybrid model was able to get 

significant accuracy on the tests (43.26) as opposed to 

the CNN-only (35.12) model. More to the point, it did 

result in significant gains in macro-F1 score (0.21 vs. 

0.10) and macro-AUC (0.70 vs. 0.61), which suggests 

that the model was good in all the classes of the 

diagnostic categories, including those that have been 

underserved, like fractured teeth and infections. 

These improvements may be explained by the synergy 

between CNN-based contextual feature extraction and 

the statistical outlier method based on Isolation Forests. 

The model was made sensitive to small deviations in 

feature distribution by adding anomaly scores into the 

decision output, which would be useful in detecting rare 

pathologies that CNNs would otherwise misclassify due 

to a data imbalance of feature significance. 

The interpretability analysis also serves as evidence of 

the clinical utility of the model. The presence of grad-

cam overlays always identified diagnostically 

significant areas in caries, including the crown-root 

junction, and the apical areas in fractured teeth, 

including the apical areas. SHAP heatmaps provided 

more granularity, as the model predictions are made to 

contribute at the pixel level. Saliency maps, however, 

highlight edges and density changes that are consistent 

with expert interpretation. It is worth noting that in 

several cases of the test, each of the three interpretability 

tools reached identical anatomical regions, which makes 

the work of the system more transparent and credible. 

Our hybrid diagnostic framework performance and 

design are in line with changing trends in dental and 

medical imaging. In this instance, to illustrate the point, 

Asif et al. noted the diagnostic value of integrating 
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conventional image analysis models with AI-based 

models in the initial detection of diabetic retinopathy, 

proving that hybrid approaches are found to be resilient 

in variable clinical situations (14). We are also following 

a similar approach, which involves CNN-based 

contextual learning and statistical anomaly detection to 

overcome the problems of imbalanced datasets and rare 

pathologies. 

Van Leemput et al. confirmed that a deep learning 

algorithm was used in the detection of dental anomalies 

in intraoral radiographs through paired statistical 

analysis and the significance of objective performance 

validation by diagnostic classes (15). This is directly 

equivalent to our evaluation strategy, which will entail 

the addition of macro-F1 and macro-AUC scores to 

ensure that minority classes are sufficiently represented 

in the results. 

Zhiyuan et al. suggested a feature selection and reuse 

system of dental pathology classification and reuse 

using panoramic X-rays that enhanced the accuracy of 

the classification by maximising the reuse of learned 

features (16). Their model, however, in contrast to ours, 

did not incorporate components of statistical anomaly 

detection or interpretability, both of which are 

paramount in the clinical setting. 

Almalki et al. presented deep learning classifiers on 

image-based orthopantomography to classify dental 

diseases and reported encouraging results in 

conventional diagnostic categories (17). However, like 

the majority of deep learning methods, their design was 

very sensitive to the frequency of classes and contextual 

information, which is why they are not as useful with 

more uncommon or subtle pathologies, which our 

application of Isolation Forests can contribute to. 

Class Activation Mapping (CAM) by Zhou et al. is the 

predecessor of Grad-CAM, which is currently popular 

to reveal the areas of attention in CNNs (18). Not only 

do we implement Grad-CAM in our study, but we also 

include SHAP and saliency maps, which are highly 

likely to increase transparency and clinical trust more 

involved in the system of achieving interpretability. 

Our model is based on the effort of Liu et al., who 

suggested the Isolation Forests to be used as an effective 

tool of unsupervised anomaly detection in high-

dimensional data (19). Our modification of this strategy 

to identify point anomalies in CNN-extracted feature 

vectors to enhance sensitivity to underrepresented or 

fine findings can be applied to dental diagnostics. 

Last, Aksoy discussed explainable AI in multimodal 

medical imaging, noting that it will require combined 

interpretability measures in order to achieve clinical 

uptake (20). This belief would justify the incorporation 

of multiple XAI tools to provide us with spatial and 

feature-level insights, by which clinicians will be able 

to justify and trust AI-generated predictions. 

 

4.1 Implications for Clinical Practice 

The suggested system has several implications for 

clinical dentistry. To start with, it can be used as a 

decision support system by general practitioners or 

radiologists, especially in low-resource environments 

where there is a lack of expertise in the interpretation. 

With pointed-out areas of interest, and predictions 

justified by graphical representation, the model will be 

able to assist in early and accurate diagnosis, 

particularly with pathologies most likely to be 

underdiagnosed. 

Secondly, there is the incorporation of statistical 

anomaly detection that adds diagnostic safety. 

Clinicians can be informed to view the image more 

closely in situations where the CNN has a low 

confidence level and a high anomaly score. This 

mechanism is considered a virtual second opinion, 

which minimises the false negatives of issues that are 

subtle or rare. 

Thirdly, XAI allows visual interpretability, which 

improves transparency and regulatory compliance, 

which is very important in the implementation of AI in 

healthcare. This capability to identify model choices for 

particular regions of images promotes accountability 

and develops trust in the users, which may enhance its 

adoption in daily dental practices. 

Although the results were promising, the study is 

characterised by a number of limitations. The size of the 

dataset (n=232) is relatively small to provide 

comprehensive generalisation of the model to larger 

samples of patients or imaging systems. Data 

augmentation was used, but bigger and more diverse 

datasets are required to achieve clinical-grade strength. 

The model also lacks 3D support, e.g., cone-beam 

computed tomography (CBCT), but the model is only 

limited to 2D panoramic images at this time. The hybrid 

framework would need more architectural changes and 

computer power to be expanded to volumetric data. 

Also, although the interpretability of the model has been 

tested on a visual level and considered congruent with 

expert reasoning, no formal usability testing was done 

with dental professionals in this paper. This is a human-

oriented validation necessary to test applicability in the 

real world and satisfaction of the users. 

The above limitations should be dealt with in future 

research. One of the priorities is to increase the size of 

the data set with consideration of multi-centre multi-

demographic OPG images to determine generalizability. 

Synthetic data generation, or generative adversarial 

networks (GANs), can also potentially be included to 

reduce the problem of class imbalance and enhance the 

ability to detect rare pathology. 

The extension of the hybrid framework to multi-modal 

imaging (e.g. including intraoral images or CBCT 

scans) can be extended to enable more holistic 

diagnostic pipelines too. The other potential area of 

future research is the development of real-time 

diagnostic features of aid systems, which give 

interactive visual feedback to the clinicians as they 

interpret. 

Lastly, learning and trust could be improved by 

incorporating feedback loops in which clinicians can 

accept, amend or discard model predictions. This type 

of active learning system would enable the AI to 

constantly respond to the interaction of the users and 

enhance its performance, further aligning its diagnostic 

abilities with the clinical requirements. 

 

5. Conclusion 
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The paper describes a hybrid deep learning and 

statistical anomaly detection framework that is 

clinically relevant and can be used to classify dental 

pathology through orthopantomogram (OPG) images 

automatically. The combination of a fine-tuned ResNet-

50 model with the use of the Isolation Forest-based 

anomaly detection model shows significant gains in the 

ability to detect classes, especially those typically 

underrepresented in clinical databases. The use of 

statistical anomaly scores enabled the system to take 

into consideration point anomalies that go beyond 

spatial cues, hence filling a major gap in the traditional 

CNN-based diagnostic models. 

Moreover, the explainability of the model was greatly 

improved by incorporating three explainable AI (XAI) 

methods, namely, Grad-CAM, SHAP, and saliency 

maps. Not only did these tools strengthen the clinical 

validity of the model on the mechanisms of attention, 

but they also offered clear reasons why this model was 

making predictions. The multi-perspective visual 

interpretability, combined with high user trust and 

adherence to clinical standards that require traceability 

in decision-making, makes the model more reliable. 

The system proposed provides a compromise between 

transparency and diagnostic accuracy, which are two 

principles needed to implement AI in a healthcare 

setting. Its capacity to identify common and rare dental 

conditions with visual justification portrays the 

possibility to supplement clinical processes, support 

general practitioners, and decrease the variability of 

diagnoses. 

Further research will be done to extend this framework 

to multi-center data and 3D imaging modalities and 

integrate clinician-in-the-loop feedback to work with 

this new framework. However, the results of this study 

provide a solid groundwork for creating credible, 

explainable, and smart systems in AI-aided dental 

diagnostics. 
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