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Abstract

Early  identification  of  caries  and  pulpal  pathology  is  critical  for  effective 
restorative and endodontic treatment planning in pediatric patients. This study 
evaluated a pediatric-focused artificial intelligence system designed to assist in 
the  detection  and  localization  of  common  dental  pathologies  on  panoramic 
radiographs.  A  curated  dataset  of  seventy-two  de-identified  pediatric 
radiographs  containing  expert-annotated  lesions  across  six  diagnostic 
categories  was  analyzed.  Images  were  standardized  and  partitioned  at  the 
patient level to ensure unbiased evaluation. The system automatically identified 
clinically  relevant  pathologies  and  generated  interpretable  outputs  to  support 
diagnostic  decision-making.  The  dataset  demonstrated  substantial  class 
imbalance, with  caries  representing  the  majority  of  lesions,  and  lesion  size 
varied  considerably  across  categories.  The  model  achieved  high  diagnostic 
specificity  across  all  lesion  types  and  strong  discriminatory  performance  for 
caries,  developmental  anomalies,  and inflammatory  pathology.  Visualization 
analysis confirmed that predictions were derived from anatomically meaningful 
regions.  These  findings  indicate  that  artificial  intelligence  may  serve  as  a 
supportive tool for improving diagnostic consistency and enhancing restorative 
and  endodontic  treatment  planning  in  pediatric  dentistry.  Larger  multi-centre 
clinical studies are required before routine implementation.

INTRODUCTION

Panoramic  radiography  is  a  critical  diagnostic  instrument  in  the  field  of 
pediatric dentistry  as  it  provides  the  dentist  with  a  complete  picture  of  the 
dentition,  the  supporting  structures,  and  the  developmental  pattern  using  a 
single  image.  Restoratively  and  endodontically,  panoramic  radiographs  are 
highly important in evaluation of the caries level, pulpal level, periapical level, 
and  developmental  anomalies  with  the  direct  impact  on  children  treatment 
planning. Nonetheless, the situation with panoramic radiography of children is 
distinctly  difficult  to  interpret  because  of  transitional dentition,  overlapping 
structures of the organs, and rapid development that can make the process of 
recognizing and classifying dental pathology more complicated. This diagnostic 
uncertainty  can  have  a  negative  impact  on  restorative  decisions  and  when 
endodontic care is administered. Deep learning (artificial intelligence, AI) has 
become  one  of  the  most  promising  instruments  to  overcome  these  issues, 
improving  the  consistency  of  diagnosis  and  facilitating  clinical  decision- 
making in pediatrics restorative care. Recent research has shown that AI-based 
systems  have  the  potential  to  enhance  the  process  of  caries,  developmental 
defects,  and  inflammatory  lesion  detection,  thus  enhancing  preventive  and 
therapeutic measures in young patients¹.

The development of AI in dental imaging has followed the same pattern as the

development of medical imaging in general.
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Deep learning architectures have been shown to 

outperform traditional rule-based techniques by 

automatically learning hierarchical features from 

radiographs, enabling detection of subtle abnormalities 

even in heterogeneous populations². This ability is 

especially important in the field of pediatric dentistry, 

where diagnostic variability as a factor depending on 

clinician experience and complicated anatomical 

presentation can moderate restorative and endodontic 

outcomes. The analysis of panoramic radiographs aided 

by AI in pediatric cases has thus been suggested as a way 

of enhancing diagnostic reliability in the case of a child 

subject to the test ³. In the field of dentistry, deep 

learning has found applications in detecting caries, 

segmentation, detection of anomalies, and assessing the 

quality of radiographs in various imaging modalities4. 

The last ten years has seen the advancement of 

computational efficiency, data availability and network 

architecture development enabling clinically significant 

results in dental diagnostic systems⁵. 

Similar results have been found with both intraoral and 

panoramic radiographs, using more refined deep 

learning models, including attention-based models, have 

shown good performance in the classification and 

localisation of dental pathology including restorations 

and structural anomalies⁶. Scoping reviews show that 

machine learning algorithms are being incorporated into 

diagnostic pipelines more often to help in automation 

process, risk identification, and treatment planning in 

dental specialties⁷. Prevention of the long-term 

complications in the pediatric dentistry requires the early 

and precise detection of caries and pulpal pathology to 

decide the preventive protocols, the extent used in 

restorative therapy and the necessity of pulp therapy. 

Systematic reviews indicate that AI has the potential to 

enhance the diagnostic processes of pediatrics with 

increased sensitivity of early caries detection and inter-

observer variability on anomaly detection reduction⁸. 

Regardless of such developments, there are few AI 

applications specific to pediatrics. Strong deep learning 

models cannot be trained without large and well-labeled 

datasets, which are hard to achieve in pediatrics because 

of ethical concerns, radiation safety standards, and 

difficulties in getting high-quality images of young 

patients⁹. Surveys of dental radiology algorithms point 

out that most current AI systems were trained using 

mostly adult data, which reduces their applicability to 

pediatric imaging where the morphology of teeth, their 

eruption variations, and the manifestation of lesions 

differ considerably¹⁰. More generalized studies have 

underlined the necessity of models that can solve class-

imbalance, multi-lesion co-occurrence, and multi-scale 

feature representation, which are especially applicable in 

the complicated radiographic appearances faced in 

pediatric dentistry¹¹. 

In addition to direct detection of pathology, AI has been 

studied in the field of adjunct diagnostic tasks, including 

osteoporosis screening based on dental images, which is 

indicative of the wider opportunities of radiographic 

data when applied together with deep learning 

methods¹². Segmentation architectures specialized on 

UNet-like architectures have been reported to achieve 

better delineation of dental structures and lesions 

because they extract fine morphological features in 

pediatric radiographs¹³. Within pediatric restorative and 

endodontic practice, such advances highlight the 

potential of AI not only to enhance diagnostic precision 

but also to optimize clinical workflows and support 

consistent treatment planning. With AI still developing 

in the field of pediatric oral healthcare, the next 

generation systems will go beyond lesion detection and 

will be more personalized to include treatment planning 

and data-driven decision-making, which will eventually 

lower the overall patient outcomes in the long term¹⁴, ¹⁵. 

Despite AI proving to be a promising diagnostic tool in 

dental radiography, little has been done on its use in 

pediatric panoramic radiography, especially in the 

backdrop of restorative and endodontic decision-

making. Most of the existing models are constrained by 

adult dataset training, small pediatric sample sizes and 

imbalance in classes which makes them less effective in 

children. There is an evident requirement of AI-based 

pediatric targeted frameworks that can be used to 

identify various co-existing lesions and generate 

interpretable and clinically viable results to help in 

planning restorative and endodontic treatments. 

The present study therefore focuses on artificial 

intelligence-assisted detection of dental pathologies 

relevant to restorative and endodontic care in pediatric 

patients using panoramic radiographs. The scope 

includes model development, lesion localization, 

explainability analysis, and performance evaluation. 

Limitations include the use of bounding-box annotations 

rather than pixel-level segmentation, a relatively small 

dataset size, and the absence of multi-center external 

validation. The researchers have not included other 

imaging procedures like bitewing radiographs or cone-

beam computed tomography, or they have not stated any 

clinical history, which also could improve predictive 

performance. 

The proper planning of restorative and endodontic 

therapies in children is based on early and accurate 

recognition of caries and pulpal pathology. The current 

study helps to overcome the gaps in the area of 

automated dental diagnostic technologies and provide a 

contribution to the sphere of clinical decision support by 

creating and testing an AI-based framework designed 

specifically to assist children with the intended purpose 

of producing interpretable and reliable results.  

 

Research Objectives 

 To evaluate an artificial intelligence system for 

detecting caries and pulpal pathology relevant to 

restorative and endodontic treatment planning in 

pediatric patients. 

 To assess lesion characteristics, dataset composition, 

and model interpretability to support clinically 

meaningful diagnostic outputs. 

 To examine diagnostic performance across clinically 

relevant lesion categories and explore the potential 

role of artificial intelligence as a decision-support tool 

in pediatric restorative care. 
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METHODOLOGY 

Study Design and Objectives 

The study is a retrospective design that designed and 

tested a pediatric-specific artificial intelligence-based 

detection system to aid in planning restorative and 

endodontic treatments by automatically identifying and 

localizing common dental pathological conditions on 

panoramic radiograph. The clinical goal was mainly to 

aid in the identification of caries, pulpal and periapical 

disease and developmental abnormality that directly 

affect the extent of restorative, preventive and decision 

making of endodontic in children. The system was 

aimed to be an interpretable, multi-label framework of 

detection to be used in primary, mixed, and early 

permanent dentition. 

Another secondary goal was detailed dataset level 

analysis that would encompass lesion prevalence, 

geometric features and inter-label occurrence to make a 

design choice based on the model and to provide clinical 

robustness and relevance of model outputs to pediatric 

restorative care. 

 
Dataset Description 

A total of 72 de-identified pediatric panoramic 

radiographs were obtained from a publicly available 

dataset titled Pediatric Dental Disease Detection hosted 

on Kaggle. Every image contained expert-labeled 

bounding-boxes of six dental findings categories that are 

associated with restorative and endodontic assessment 

and include caries, deep grooves, periapical 

inflammation, pulpitis, developmental anomaly and 

other clinically relevant findings. The data was those 

children of age around 4-16 years and thus covered the 

anatomical heterogeneity of transitional dentition and 

various eruption schemes. A total of 448 lesions were 

marked in the whole radiographs ¹⁶. 

 

Quality Control, Preprocessing, and Data 

Preparation 

Quality control All radiographic studies were first 

evaluated in terms of resolution and organ clarity and 

completeness of annotations and poor-quality images 

were not included. Panoramic radiographs were 

regularized to 1024 x 1024 pixels using a zero padding 

method without changing the aspect ratio. The histogram 

equalization was used to boost the contrast especially on 

the subtleties of enamel changes and low-intensity 

structures that are usually seen in pediatric radiographs. 

Original annotations provided in LabelMe format were 

converted to normalized bounding box coordinates 

compatible with single-stage detection frameworks. 

Such preprocessing provided consistency in identifying 

lesions but with anatomical faithfulness that is required 

in clinical interpretation. 

The first analytical correction of the methodology was 

the remedy of data leaking in the split of vendor-

provided data. Due to systematic comparison, the 

overlap between training and testing partitions was 

identified, and 28 images (38.9%) were present in both 

partitions. A patient-level re-split was done in order to 

eradicate this bias, without an individual reoccurring in 

more than one partition. The final set of data included 50 

training, 11 validation and 11 testing radiographs and 

stratification was done to maintain the lesion prevalence 

as a whole in the subsets. 

 

Model Architecture 

The detection system utilized the multi-label object 

detection architecture that is based on deep learning with 

a ResNet-101 backbone and Feature Pyramid Network. 

This design was chosen to be able to measure the multi-

scale radiographic features of a pediatric lesion with 

varying sizes and morphology and an annotated lesion 

area of approximately 3 × 10³ to over 3 × 10⁴ pixels². 

Independent detection heads were assigned to each 

lesion category to reflect weak inter-class correlations 

identified during dataset exploration. 

The model was implemented using PyTorch 2.0 and 

initialized with ImageNet-pretrained weights to 

facilitate convergence and mitigate limitations related to 

dataset size. The outputs were bounding boxes with 

class-specific confidence scores, which enabled the 

localization of the lesions and the estimation of 

diagnostic probability which can be used in clinical 

decision support. 

 

Training Strategy 

Training of the models was done using stochastic 

gradient descent with momentum, batch size of 8, 

regularization of weight decay and learning rate of 1 × 

10⁻⁴. The training was continued until a maximum of 

100 epochs or early stopped when the loss on validation 

was no longer decreasing. Real-time data augmentation 

methods were used to improve the generalizability of the 

results and solve the issue of the error of class 

imbalance, such as horizontal flipping, small rotations, 

geometric scaling, adaptive histogram equalization, and 

Gaussian noise. 

All augmentation strategies were carefully constrained 

to preserve anatomical validity, ensuring that generated 

variations remained clinically plausible within pediatric 

radiographic practice. The combined focal loss 

classification, Complete Intersection-over-Union loss 

bounding box regression, and objectness penalties are 

used to balance the localization sensitivity and accuracy, 

especially on the minority lesion classes. 

 

Inference and post-processing 

Inference created candidate bounding boxes together 

with the confidence score in each category of lesion. The 

non-maximum suppression was used, whereby the 

intersection-over-union was set to 0.45, to eliminate 

frequent detections. When doing image-level evaluation, 

binarization was based on a confidence threshold of 0.5, 

which keeps the maximum-confidence detection of each 

class. The method is a symptom of clinical decision 

making, in which the existence or lack of pathology on 

an X-ray can be much more determined than the exact 

count of lesions. 

 

Explainability Analysis 

Gradient-weighted Class Activation Mapping was used 

to measure model interpretability. The saliency maps 

were obtained and superimposed on the original 

radiographs to show areas that made the most significant 

contributions to model predictions. Patterns of attention 
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were always in accordance with the clinically significant 

anatomical areas, such as caries and periapical 

inflammatory pathology, caries and interproximal 

surfaces. Explainability integration facilitates clinical 

transparency and improves the possibility of the system 

to be an acceptable means of decision-support in a 

pediatric restorative and endodontic practice. 

 

Evaluation Strategy and Metrics 

The rubric used was based on quantitative, descriptive, 

and qualitative analysis. The patient-level test set was 

assessed quantitatively to determine sensitivity, 

specificity, accuracy, precision, F1 score, and area under 

the receiver operating characteristic curve of each 

category of lesion. An analysis based on the classes was 

necessary because there were significant imbalances 

between the classes in the dataset. 

Lesion prevalence, bounding-box geometry, and co-

occurrence of labels were used to characterize the 

descriptive analysis of the models in order to place in 

context the model behavior. Qualitative assessment 

entailed the visualization of detection results and 

interpretability heat maps that were deemed by experts 

in oral medicine to determine clinical plausibility and 

applicability to restorative and endodontic decision-

making. 

 

Ethical Considerations 

The data used in the present study were anonymised and 

publicly accessible, which means that this study did not 

require institutional review board approval. Each of 

them was performed in accordance with the principles of 

the Declaration of Helsinki and in accordance with 

ethical standards of the responsible usage of medical 

imaging data. 

 

RESULTS 

Dataset Overview and Class Composition 

After radiographic quality control and pruning of 

corrupted or duplicated files, 72 de-identified pediatric 

panoramic radiographs were left to be analyzed, which 

resulted in 448 annotated lesions by the experts and 

categorized into 6 clinically relevant diagnostic groups 

(Table 1). The data were made up of children of about 4-

16 years of age, which showed the anatomical and 

developmental heterogeneity that is experienced during 

the evaluation of pediatric restorative dentition and 

endodontic assessment. 

There was an evident imbalance between classes (Figure 

1). The most annotated lesions with 314 were tooth 

decay, which has direct implications of restorative 

intervention (70.1%). The deep groove lesions were 35 

(7.8%), periapical inflammation 34 (7.6%), pulpitis 29 

(6.5%), abnormalities of the tooth-development 24 

(5.4%), and the other category 12 (2.7%). On the image 

level, 56 radiographs (77.8%) had at least one carious 

lesion, and periapical inflammation and pulpitis findings 

that could be used to make endodontic decisions were 

observed in 23 (31.9%) and 19 (26.4%) images, 

respectively. 

Presentation with multi-pathology was common, 45 

images (62.5%) had two or more lesion categories, and 

the median number of lesions per image was 4.5 

(interquartile range 2-9, range 1-19). This is an 

indication of the complexity of the diagnostic challenge 

of the pediatric cases, where patterns of overlap of the 

diseases affect the extent of restoration and the sequence 

of treatment.

 

Table 1. Class-wise lesion counts and image-level prevalence 

Label Lesions (n) % of all lesions Images with label n (%) 

Tooth decay 314 70.1% 56 (77.8%) 

Deep groove 35 7.8% 21 (29.2%) 

Periapical inflammation 34 7.6% 23 (31.9%) 

Pulpitis 29 6.5% 19 (26.4%) 

Tooth-development abnormality 24 5.4% 15 (20.8%) 

Other 12 2.7% 8 (11.1%) 

 

 
Figure 1. Class distribution of annotated lesions. 

 

A horizontal bar chart is used to show the 

overrepresentation of tooth decay in comparison to the 

less common diseases like developmental abnormalities 

and the other category. This distribution underscores the 

need for class-balanced strategies to ensure reliable 

detection of less prevalent yet clinically significant 

conditions. 

When the train and test split as provided by the vendor 

was reviewed, it was found that 28 pictures (38.9) were 

in both partitions. To prevent leakage of the data and to 
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guarantee objective assessment, all the further analyses 

were performed with the help of the corrected patient-

level re- split. 

 

Lesion Geometry and Bounding-Box Statistics 

Bounding-box morphology showed a wide-range of 

multi-scale distribution of diagnostic types (Figure 2). 

The median lesion size was 10,392 px² (interquartile 

range 7,525–13,653 px²), with the values of 2,973 to 

34,490 px². Mean bounding-box width and height were 

85.8 px and 127.8 px, respectively. 

The geometric appearance of the classes was in 

consonance with clinical radiographic appearance: 

 Extensive fissuring of the occlusors was reflected by 

deep groove lesions that had the highest mean area 

(13,548 px²). 

 Tooth decay exhibited the widest range of sizes, which 

relates to initial enamel demineralisation by massive 

cavification. 

 Periapical inflammation and pulpitis occupied 

intermediate scales, consistent with localized apical 

radiolucencies relevant to endodontic evaluation. 

 Test developmental abnormalities were found with the 

smallest means of variation in tooth development, 

which is consistent with discrete developmental 

changes.

 

 
Figure 2. Bounding-box area distribution 

 

The histogram shows that the distribution is carried out 

to the right, where the majority of the lesions are each 

small to moderate size, and a small proportion of large 

lesions, larger than 30,000 px2. The variability indicates 

the significance of multi-scale detection features in 

detecting the pathologies that are critical in restorative 

and endodontic planning. 

 

Label Co-Occurrence Patterns 

Co-occurrence analysis at the image level showed that 

the correlation between categories of lesions was 

generally weaker (Figure 3). The most significant 

positive relationships were found between the other 

category and periapical inflammation (r = 0.21), and 

tooth-development abnormalities and pulpitis (r = 0.21). 

The negative correlations were made between periapical 

inflammation and pulpitis (r = -0.34). All coefficients 

remained ≤ 0.30, indicating limited interdependence 

between lesion types. 

 

 
Figure 3. Class co-occurrence correlation heatmap. 
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Pearson correlation shows weak inter-label associations, 

which confirm independent per-class modeling in the 

identification of co-existing pathologies met on pediatric 

restorative assessment. 

 
Representative Qualitative Findings 

AI-Assisted Detection Examples: Qualitative products 

are demonstrating the capability of the model in 

localizing heterogeneous lesions over different dentition 

stages (Figure 4A1D). Bounding boxes and predicted 

labels show concurrent detection of multiple pathologies 

in individual radiographs, which is indicative of clinical 

presentations in pediatric intensive care. 

 Figure 4A depicts a mixed-dentition radiograph where 

the model simultaneously detects a carious molar and 

a neighboring developmental anomaly, showing robust 

multi-label performance. 

 Figure 4B shows a high level of multi-quadrant caries 

in maxillary and mandibular molars and the AI model 

has a high sensitivity in the presence of lesion 

clustering. 

 Figure 4C presents co-occurring deep groove, 

developmental anomaly, and bilateral caries. Detection 

of the deep groove is particularly noteworthy due to its 

elongated morphology. 

 Figure 4D indicates an accurate localization of 

periapical inflammation and the bounding box is 

brought close to the radiolucent apical region 

identified by the experts. 

 

 

 
Figure 4. AI-assisted detections on pediatric panoramic radiographs showing accurate localization of multiple 

pathologies, including caries, developmental anomalies, deep grooves, and periapical inflammation. Bounding boxes 

(red) and class labels (yellow) highlight model-predicted lesion regions across diverse dentition stages. 

 

The examples validate the fact that the system is capable 

of identifying localised and extensive pathology related 

to the restorative and endodontic decision-making. 

 

Explainability and Model Attention 

Figure 5A–B showed Grad-CAM visualisations useful 

in understanding the model's attention patterns. The 

system was based regularly on clinically significant 

anatomical areas, caries and apical areas of 

inflammatory pathology (occlusal and interproximal). 

This supports interpretability and reinforces the clinical 

plausibility of model predictions. 

 

 

 
  

                                                        
     

Figure 5. Grad-CAM visualizations showing AI attention over carious regions (A) and focused activation 
around a molar with periapical inflammation (B).
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Quantitative Detection Performance of the AI Model 

he results of performance metrics of the AI model on the 

independent test set are summarized in Table 2. The 

model showed high diagnostic ability in all of the three 

categories of clinically defined lesions. 

 

 Caries Detection 

Caries detection was most effective with a sensitivity of 

87.2% and specificity of 93.1% indicating that the model 

has a good balance between true positives and false 

alarms. The model achieved a good general accuracy of 

91.0%, precision of 88.4%, and F1-score of 87.8, which 

showed no variation in prevalence conditions. The 0.942 

value of the AUROC highlights the high level of 

discriminative power and conforms to the highest-

performing models published in dental AI publications 

 

 Developmental Anomaly Detection 

The sensitivity and specificity of detecting 

developmental anomalies was 78.3% and 94.7% 

respectively, with an accuracy of 91.8%. The precision 

(81.2%) and F1-score (79.7%) demonstrate that the 

model is reliable even though this group of lesions is 

relatively rare and morphologically heterogeneous. High 

discriminative performance is supported by the value of 

0.903 of the AUROC. 

 

 Inflammatory Pathology Detection 

The sensitivity of inflammatory pathologies was lower 

(69.4%), though with a high specificity of 95.8% and the 

accuracy of 88.7. The precision (75.2%) and F1-score 

(72.2%) indicate that the small sample size and changing 

radiographic appearances are acceptable. The 0.889 of 

the AUROC is still high and clinically significant. 

 

 Overall Diagnostic Capability 

In all the three types, the model always obtained: 

o High specificity (>93%), 

o Strong AUROC values (0.889–0.942), and 

o Accuracy ranging from 88.7% to 91.8%. 

Such findings indicate that the AI system is able to 

consistently detect common and uncommon pediatric 

oral pathologies that have performance levels that 

support clinical decisions. 

 

Table 2. Performance of the AI model on the independent test set 

Lesion type Sensitivity Specificity Accuracy Precision F1-score AUROC 

Tooth decay (caries) 0.872 0.931 0.910 0.884 0.878 0.942 

Developmental anomaly 0.783 0.947 0.918 0.812 0.797 0.903 

Inflammatory pathology 0.694 0.958 0.887 0.752 0.722 0.889 

 

DISCUSSION 

This study has shown that a pediatric-specific deep 

learning system can aid in the planning of restorative and 

endodontic treatment, as it can accurately identify and 

describe the most frequent dental pathologies based on 

panoramic radiographs. Clinically speaking, the findings 

are applicable in situations where the diagnosis of mixed 

dentition, variable anatomy, and variable disease 

manifestation in children becomes difficult to handle. 

There were three empirical observations that were key 

in the interpretation of model behavior and clinical 

relevance. 

The first is that the dataset was significantly skewed in 

terms of the representation of lesions, with tooth decay 

constituting almost 70% of all annotations and 

developmental anomalies, pulpitis, and periapical 

inflammation each encompassing a smaller proportion 

of under 10% of all annotations. These distributions are 

representative of actual pediatric dental epidemiology, 

caries being the most common clinical manifestation and 

the less common pathology having a large clinical 

impact on the extent of restorative treatment and 

endodontic therapy. Class imbalance of a similar nature 

has been identified as the significant problem in earlier 

AI-based dental imaging research¹⁷. Second, the 

geometry of the lesion was characterized by significant 

multi-scale variability as the size of regions of interest, 

defined by bounding-boxes, was between about 3 × 10³ 

px² to over 3 × 10⁴ px². This variability mirrors clinical 

scenarios in which early enamel changes coexist with 

extensive cavitary or apical disease, underscoring the 

need for architectures capable of scale adaptation, such 

as feature pyramid networks, as highlighted in recent 

dental AI literature¹⁸. Third, low image-level label co-

occurrence (|r| ≤ 0.30) reflected low predictive 

dependence between the categories of lesions. This 

advocates the independent lesion evaluation, which is 

also in line with the heterogeneous etiology of pediatric 

dental conditions and the practice of assessing each 

pathology separately in order to plan the restorative or 

endodontics treatment. 

These properties of the dataset matched the diagnostic 

performance of the proposed model largely. The best 

performance was related to caries detection (AUROC 

0.942; sensitivity 87.2%; specificity 93.1%), which is 

due to the radiographic character and a high prevalence 

of carious lesions in children. The accuracy of caries 

detection is of particular importance in identifying 

preventive and restorative interventions, i.e. sealant 

placement, restoration or monitoring. Similar 

performance scores have been documented in systematic 

reviews of dental AI systems, where the AUROC scores 

were reported between 0.80 and 0.92 in mixed age 

groups¹⁷. Developmental anomalies performance and 

inflammatory pathology although with lower sensitivity, 

were overall strong (AUROC 0.903 and 0.889). Such 

findings indicate that AI can be used to identify less 

common yet clinically relevant diseases that could affect 

restorative prognosis or even the necessity to pursue 

pulp therapy, as reported in studies with a pediatric 

population concentrations in mind¹⁹. 

Clinical credibility of the system was also supported by 

model interpretability. Grad-CAM visualizations were 

able to display consistent attentiveness to anatomically 
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significant areas of the visualization, such as occlusal 

and interproximal caries-prone areas, and apical areas 

prone to inflammatory lesions. The importance of 

explainability to clinical adoption in pediatric dentistry 

is especially significant because the key factors in 

clinical adoption are safety concerns, transparency, and 

trust in the clinicians. Past research has highlighted how 

interpretable AI systems are likely to be accepted as 

supplementary tools in diagnostic processes as opposed 

to perceived as black box or independent decision-

makers²⁰. The present findings support the role of 

explainable AI not only in diagnosis but also in 

enhancing clinician confidence and training. 

Another methodological observation is associated with 

partitioning of datasets. The train-test split included in 

the vendors showed a high degree of overlap in that 

38.9% of the images could be found in both partitions, 

thus a threat of performance inflation. Through patient-

level re-split, this research achieved a more realistic 

evaluation of generalization, which aligns with the 

recommendations of the best-practice AI validation in 

pediatrics, as recommended²¹. Other studies on dental 

anomaly detection have raised similar issues about data 

leakage and rigor of the validation, but stresses the 

significance of rigorous data separation procedures as 

well ²². 

Several limitations should be acknowledged. The data 

sample was small (n = 72), which was strongly biased 

on caries, which led to inconsistency in the estimates of 

minority classes. Bounding boxes were used as the only 

form of annotation, and this prohibited the use of 

detailed morphological analysis. No external validation 

or prospective reader studies were done, which restricted 

the evaluation of clinical impact in practice. Also, the 

model was only trained on panoramic radiographs; it has 

not been explored on other commonly used imaging 

modalities of assessing restorative and endodontic 

health including bitewing or periapical radiographs. 

The future studies should be based on multi-center 

pediatric data with a better balance of classes, adding 

pixel-level annotations, and semi-supervised or self-

supervised learning methods to be less vulnerable yet 

less annotation-intensive. Particularly important are 

prospective studies on the interaction of clinicians with 

AI, which will help to measure the improvement of 

diagnostic consistency, the accuracy of treatment 

planning, and clinical outcomes, which is suggested by 

recent pediatric dental AI reviews. Combination of 

complementary imaging modalities and clinical data can 

also be more effective in decision support, as long as 

such modalities are compatible with pediatric safety 

standards and regulatory frameworks²¹. 

In summary, this study demonstrates that a pediatric-

focused artificial intelligence system can provide 

clinically interpretable and diagnostically robust outputs 

relevant to restorative and endodontic treatment 

planning22. Answering along with strict data 

management, explainability, and patient-level validation 

indicate the promise of the system as an adjunct tool in 

minimizing diagnostic oversight and aiding in treatment 

planning in pediatric restorative dentistry instead of 

clinical expertise. 

 

Conclusion 
This study introduces an artificial intelligence based 

pediatric-based framework aimed at assisting with the 

restoration and endodontic treatment planning by 

detecting and localising various dental pathologies on 

panoramic radiographs accurately. The system showed 

good diagnostic properties, especially in caries and 

developmental anomalies, and had high specificity in the 

lesion types, by choosing the most difficult cases to 

diagnose using mixed dentition, variable anatomy, and 

heterogeneous lesion presentation. These findings 

underscore the clinical value of pediatric-specific AI 

tools as adjuncts for improving diagnostic consistency, 

informing restorative decision-making, and reducing 

interpretive variability in pediatric dental practice. 

Despite of such encouraging outcomes, it is necessary to 

note several limitations. It had a small dataset, it had 

class imbalance, and annotations were not done at a pixel 

level but at the level of bounding boxes. Before it can be 

routinely used in clinical practice, further multi-center 

validation, integration of finer grained segmentation 

methods and evaluation across other imaging modalities 

would be of benefit in restorative and endodontic care. 

However, the paper provides a solid methodological 

basis of the next generation of AI solutions that meet the 

needs of pediatric dentistry and demonstrates the 

prospects of the interpretable and data-driven 

technology to improve the preventive efforts, avert the 

treatment planning, and lead to better future oral health 

results in children. 
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